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 ABSTRACT 

In this paper, a new kind of graph on a ring is introduced and investigated. Let 𝑅 be a ring with unity. 

Semisimple-intersection graph of a ring 𝑅, denoted by 𝐺𝑆(𝑅), is an undirected simple graph with all nonzero 

ideals of 𝑅 as vertices and two distinct vertices 𝐼 and 𝐽 are adjacent if and only if 𝐼 ∩ 𝐽 is a nonzero 

semisimple ideal of 𝑅. In this article, we investigate the basic properties of these graphs to relate the 

combinatorial properties of 𝐺𝑆(𝑅) to the algebraic properties of the ring 𝑅. We determine the diameter and 

the girth of 𝐺𝑆(𝑅). We obtain some results for connectedness and bipartiteness of these graphs, as well as 

give a formula to compute the clique numbers of 𝐺𝑆(𝑅). We observed that the graph 𝐺𝑆(𝑅) is complete if 

and only if every proper ideal of 𝑅 either simple or semisimple and every pair of ideals in 𝑅 have non-zero 

intersection. 
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1 INTRODUCTION 

        The study of algebraic structures, using the properties of graph theory, tends to an exciting research 

topic in the last decade. Bosak in 1964 [7] introduced the concept of the intersection graph of semigroups. 

In 1988, Istvan Beck [5] proposed the study of commutative rings by representing them as graphs, named 

zero divisor graph. These zero divisor graphs marked the beginning of an approach to studying commutative 

rings with graphs. Similarly, there is several graphs assigned to modules and semirings [2-4]. In 2009, the 

intersection graph of ideals of a ring was considered by Chakrabarty, Ghosh, Mukherjee and Sen [8]. The 

intersection graph of ideals of a ring 𝑅 is a graph having the set of all nonzero ideals of 𝑅 as its vertex set 

and two distinct vertices 𝐼 and 𝐽 are adjacent if and only if 𝐼 ∩ 𝐽 is non-trivial (non-zero). The intersection 

graph of ideals was studied by a large number of mathematicians, in which they obtained many of its 

properties and linked them to the properties of rings as demonstrated in [1, 9, 11-14]. In this paper, we 

introduce semisimple-intersection graphs of ideals of rings as the following. 

Definition 1.1: Let 𝑅 be a ring with unity. The semisimple-intersection graph of 𝑅, denoted by 𝐺𝑆(𝑅), is 

defined to be a simple graph whose vertices are the nonzero ideals of 𝑅, and two vertices 𝐼 and 𝐽 are 

adjacent, and we write 𝐼 − 𝐽, if and only if 𝐼 ∩ 𝐽 is a nonzero semisimple ideal. 

        For example, consider the ring ℤ4. The nonzero ideals of ℤ4 are ℤ4 and 2ℤ4 ≅ ℤ2. Obviously, 𝐺𝑆(ℤ4) 

is ℤ4 − 2ℤ4. Clearly, the semisimple-intersection graph is a subgraph of the intersection graph of ideals of 

𝑅. We study several properties of this graph such as connectedness, regularity, girth, cliques, the “bipartite” 

property. Some preliminaries from ring theory and graph theory are listed in Section 2. In Section 3, we 

show that the girth of 𝐺𝑆(𝑅) equals one of the three values 3, 4, or ∞. We also show that the diameter of 
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𝐺𝑆(𝑅) does not exceed 4 and never equals 3. In Section 4, we give explicit formulas to compute the clique 

number of 𝐺𝑆(𝑅). Besides, a necessary and sufficient conditions for 𝐺𝑆(𝑅) to be bipartite are provided. We 

give many examples to illustrate the concepts discussed here, and provide counterexamples for expected 

results. 

 

2 PRELIMINARIES 

  This section presents a fast review of rings and graphs that are important in this work. All notions of 

graph theory presented here could be found in [6], also, all notions of ring theory presented here could be 

found in [10]. In this paper, all rings are assumed to be nonzero rings with unity and are not necessarily 

commutative. Besides, the ideals are considered to be left ideals. We first start with some preliminaries 

from Ring Theory. 

 

Definition 2.1: An ideal 𝐼 of a ring 𝑅 is said to be simple (or minimal) if 𝐼 and {0} are the only ideals 

included in 𝐼. 

Definition 2.2: The direct sum of simple ideals of a ring 𝑅 is called a semisimple ideal. We call each simple 

ideal in the decomposition of a semisimple ideal, a component. 

Obviously, a simple ideal is semisimple with one component. On the other hand, every ideal of a 

semisimple ideal is semisimple. 

 

Definition 2.3: The socle of 𝑅, denoted by 𝑆𝑜𝑐(𝑅), is defined to be the sum (precisely, the direct sum) of 

all nonzero simple ideals of 𝑅. If 𝑅 = 𝑆𝑜𝑐(𝑅), we call 𝑅 a semisimple ring. 

Definition 2.4: A proper ideal 𝐼 of a ring 𝑅 is said to be maximal if 𝐼 is not contained in another proper 

ideal of 𝑅. 

Definition 2.5: A ring 𝑅 is said to be Artinian if it satisfies the descending chain condition on ideals. 

Theorem 2.6: A ring 𝑅 is Artinian if and only if every nonzero ideal contains a nonzero simple ideal. 

 

       As a direct corollary from Theorem 2.6, semisimple rings are Artinian. 

       Next, we turn to preliminaries from Graph theory concerning undirected graphs. In what follows, 𝐺 

indicates an undirected graph. The number of vertices of 𝐺 is called the order the graph 𝐺. The set of 

vertices of 𝐺 is denoted by 𝑉[𝐺]. If two vertices 𝑢 and 𝑣 are adjacent, we express that symbolically by 𝑢 −
𝑣. 

 

Definition 2.7: Let 𝑣 be a vertex in 𝐺. The neighborhood 𝑁(𝑣) of v is the set of all vertices adjacent to 𝑣, 

i.e., the set of all vertices each of which is linked to 𝑣 by an edge. 

       If 𝐺 is a semisimple undirected graph, then 𝑣 < 𝑁(𝑣). If 𝑁(𝑣) = ∅, then 𝑣 is an isolated vertex. 

 

Definition 2.8: The degree of a vertex 𝑣 of 𝐺 is the number of edges incident to 𝑣, i.e., going out of 𝑣. The 

degree of 𝑣 is denoted by degG(𝑣) (or deg(𝑣) if there is no confusion with the underlined graph). The 

minimum of the degrees of the vertices is denoted by 𝛿(𝐺), while the maximum of the degrees of the 

vertices is called the degree of the graph and is denoted by ∆(𝐺). 
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 When 𝐺 is a simple graph, then deg(𝑣) = |𝑁(𝑣)|, where |𝑁(𝑣)| means the cardinality of 𝑁(𝑣). So, 𝑣 

is isolated if and only if deg(𝑣) = 0. 

 

Definition 2.9: A graph whose vertices have equal degrees is called a regular graph. A graph 𝐺 is regular 

if and only if ∆(𝐺) = 𝛿(𝐺). 

Definition 2.10: Let 𝑣 and 𝑢 be two vertices of 𝐺. The length of a path between 𝑣 and 𝑢 is the number of 

edges forming the path. The distance 𝑑(𝑢, 𝑣) between 𝑣 and 𝑢 is the length of a shortest path between them. 

The diameter of 𝐺, denoted by diam(𝐺), is defined to be the supremum of the set {𝑑(𝑢, 𝑣) ∶  𝑢, 𝑣 ∈ 𝑉[𝐺]}. 

Definition 2.11: A graph 𝐺 is path connected if there is a path between any two vertices of 𝐺. 

Definition 2.12: A graph is said to be complete if it is a simple graph and every pair of vertices are adjacent. 

The complete graph on 𝑛 vertices is denoted by 𝐾𝑛. 

Definition 2.13: A subgraph of 𝐺 which is a complete graph is called a clique of 𝐺. The order of a largest 

clique (i.e., a clique with the largest number of vertices) is called the clique number of 𝐺 and it is denoted 

by 𝜔(𝐺). 

Definition 2.14: By the girth of 𝐺, we mean the length of a shortest cycle in 𝐺. The girth of 𝐺 is denoted 

by gr(𝐺). If 𝐺 has no cycles, then we write gr(𝐺) = ∞. 

Definition 2.15: A simple graph 𝐺 is named bipartite if we can partition 𝑉[𝐺] into two disjoint nonempty 

subsets (each subset is called a part) such that the vertices belonging to the same subset are not adjacent to 

each other. A complete bipartite graph is a bipartite graph where each vertex in one part is adjacent to each 

vertex in the other part. A complete bipartite graph is denoted by 𝐾𝑚,𝑛, where 𝑚 is the cardinality of one 

part and 𝑛 is the cardinality of the other part. 

3  CONNECTIVITY, DIAMETER AND GIRTH OF 𝑮𝑺(𝑹) 

   In this section, we study the connectivity and girth of 𝐺𝑆(𝑅). Also, we determine the diameter of 

𝐺𝑆(𝑅). In addition, we give the necessary and sufficient conditions for 𝐺𝑆(𝑅) to be a complete graph. 

 

        Recall that a null graph is a graph whose vertices are not adjacent to each other (i.e., edgeless graph). 

 

Theorem 3.1: The graph 𝐺𝑆(𝑅) is a null graph if and only if 𝑅 is a simple ring or 𝑅 has no nonzero simple 

ideals. 

Proof: Assume 𝐺𝑆(𝑅) is a null graph. Suppose for contrary that 𝑅 is not simple and it contains a nonzero 

simple ideal 𝐼, so 𝐼 is semisimple. Then 𝑅 − 𝐼 and hence 𝐺𝑆(𝑅) is not null, which is a contradiction to the 

hypothesis “𝐺𝑆(𝑅) is a null graph”. The `converse is easy. □  

Example 3.2: 𝐺𝑆(ℤ) and 𝐺𝑆(ℤ2) are null. 

 

Remark 3.3: In 𝐺𝑆(𝑅), 𝐼 − 𝑅 if and only if 𝐼 is a nonzero semisimple (or simple) ideal of 𝑅. So the subgraph 

consisting of 𝑅 with all nonzero simple ideals of 𝑅 is a star graph with center 𝑅, and hence deg(𝑅) equals 

the number of nonzero simple ideals ideals of 𝑅. Thus, if 𝑅 is semisimple with 𝑛 components, then 

deg(𝑅) = 𝑛. On the other hand, if 𝐼 is a nonzero simple ideal of 𝑅 and 𝐽 is an ideal of 𝑅, then 𝐼 − 𝐽 if and 
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only if 𝐼 ⊊ 𝐽. Moreover, every pair of different nonzero simple ideals is not adjacent, or equivalently, the 

subgraph of 𝐺𝑆(𝑅) consisting of nonzero simple ideals is a null graph. 

   Next, we study the cycles of 𝐺𝑆(𝑅). We show that the cycles with length at least 4 has only two special 

patterns. Afterward, we demonstrate that the girth of 𝐺𝑆(𝑅) is either ∞, 3, or 4. 

 

Theorem 3.4: The graph 𝐺𝑆(𝑅) has a cycle of length 3 if and only if 𝐺𝑆(𝑅) contains at least two adjacent 

non-semisimple ideals. 

Proof: Assume that the graph 𝐺𝑆(𝑅) has a cycle of length 3, say 𝐼 − 𝐽 − 𝐾 − 𝐼. By Remark 3.3, at most 

one of the vertices is semisimple. So, at least two of the vertices in this cycle are adjacent non-semisimple 

ideals of 𝑅. For the converse, let 𝐼 and 𝐽 be two different nonzero non-semisimple ideals such that 𝐼 ∩ 𝐽 is 

nonzero semisimple. Then we have the cycle 𝐼 − 𝐽 − 𝐼 ∩  𝐽 − 𝐼. □ 

Theorem 3.5: If the graph 𝐺𝑆(𝑅) has a cycle, then either gr(𝐺𝑆(𝑅)) = 3 or gr(𝐺𝑆(𝑅)) is even. 

 

Proof: Assume that 𝐺𝑆(𝑅) has the cycle 𝐼1 − 𝐼2− . . . −𝐼𝑛 − 𝐼1, and 𝑛 > 3, with the least length. By Remark 

3.3 and Theorem 3.4, if two vertices in the cycle are adjacent, then one of them is nonzero semisimple and 

the other is non-semisimple. In other words, the vertices of the cycle alternate between semisimple and non-

semisimple ideals. Without loss of generality, assume 𝐼1 is semisimple. Then 𝐼2 is not semisimple, 𝐼3 is 

semisimple, 𝐼4 is not semisimple, and so on. Thus, for each 1 ≤ 𝑘 ≤ 𝑛, 𝐼𝑘 is semisimple if 𝑘 is odd, and 𝐼𝑘  

is not semisimple if 𝑘 is even. If 𝑛 is odd, then 𝐼𝑛 is semisimple and this implies 𝐼𝑛+1 = 𝐼1 is not semisimple 

which number of contradicts the assumption that 𝐼1 is semisimple. We conclude that 𝑛 is even. Since the 

length of a cycle equals 𝑛, the its vertices, we get that the length of the cycle is even. As a result, any cycle 

in 𝐺𝑆(𝑅) has either a length of 3 or has an even length. So, gr(𝐺𝑆(𝑅)) = 3 or gr(𝐺𝑆(𝑅)) is even. □ 

  

Corollary 3.6: Let 𝑅 be a semisimple ring. If 𝑅 has more than two components, then gr(𝐺𝑆(𝑅)) = 3. 

Otherwise, gr(𝐺𝑆(𝑅)) = ∞. 

Proof: Assume 𝑅 has at least three components. Let 𝐼⨁𝐽⨁𝐾 be a semisimple ideal of 𝑅. Then 𝐼⨁𝐽 and 

𝐽⨁𝐾 are nonzero different non-semisimple ideals whose intersection is the simple ideal 𝐽. By Theorem 3.4, 

𝐺𝑆(𝑅) has a cycle of length 3, and hence gr(𝐺𝑆(𝑅)) = 3. The rest of the proof is easy. □ 

 

Remark 3.7: The proof of Theorem 3.5 displays a technique to build a cycle of a shortest length more than 

3 as illustrated in the next example. 

Example 3.8: Let 𝑅 = 𝐼 ⊕ 𝐽 ⊕ 𝐾 ⊕ 𝑇 be a semisimple ring with 4 components. Then 𝑃1: 𝐼 − 𝐼 ⊕ 𝐽 ⊕
𝐾 − 𝐽 − 𝐼 ⊕ 𝐽 − 𝐼 and 𝑃2 ∶  𝐼 ⊕ 𝑇 − 𝐽 ⊕ 𝑇 − 𝐼 ⊕ 𝐽 − 𝐼 ⊕  𝑇 are two different cycles of length 4. Notice 

that 𝑃1  was constructed using the technique applied in the proof of Theorem 3.5; that is the vertices of 𝑃1  

alternate between semisimple and non-semisimple ideals. However, 𝑃2  was built in different way where all 

its vertices are not simple ideals. 

Example 3.9: Given the ring ℤ4 ⊕ ℤ2, the cycle ℤ4 ⊕ ℤ2 − 0 ⊕ ℤ2 − ℤ2 ⊕ ℤ2 − ℤ2 ⊕ 0 − ℤ4 ⊕ ℤ2 is 

a shortest cycle in 𝐺𝑆(ℤ4 ⊕ ℤ2). Thus, gr(𝐺𝑆(ℤ4 ⊕ ℤ2)) = 4. 

 

         The next theorem is a natural extension of the preceding work. 

 

Theorem 3.10: Let 𝑅 be a ring with the graph 𝐺𝑆(𝑅). Then gr(𝐺𝑆(𝑅)) ∈ {3, 4, ∞}. 
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Proof: According to Theorem 3.4, if 𝑅 has no nonzero semisimple ideals, or 𝑅 is simple, then gr(𝐺𝑆(𝑅)) =
∞. Take now that 𝑅 includes exactly one nonzero semisimple ideal 𝐼. If 𝐼 is a maximal ideal (which is 

possible if all elements of R outside 𝐼 are units), then 𝐺𝑆(𝑅) is just 𝑅 − 𝐼 and henceforth gr(𝐺𝑆(𝑅)) = ∞. 

If 𝐼 is not a maximal ideal, then 𝐼 is included in proper non-semisimple ideals. At this point, if 𝐼 is included 

in a unique proper non-semisimple ideal 𝐽, then 𝑅 − 𝐼 and 𝐽 − 𝐼 are the only paths in 𝐺𝑆(𝑅) and so 

gr(𝐺𝑆(𝑅)) = ∞. However, if I is included in more than one proper non-semisimple ideal, then either there 

are two proper non-semisimple ideals intersect at I, which implies by Theorem 3.4 that gr(𝐺𝑆(𝑅)) = 3, or 

no two proper non-semisimple ideals intersect at I, which implies 𝐺𝑆(𝑅) is a star graph with center I and 

thus gr(𝐺𝑆(𝑅)) = ∞. Next, suppose that 𝑅 has at least two different nonzero semisimple ideals. Let 𝐼 and 

𝐽 be two different nonzero semisimple ideals. We distinguish between two cases. In the first case, suppose 

𝑅 = 𝐼 ⊕ 𝐽. By Corollary 3.6, gr(𝐺𝑆(𝑅)) = ∞. In the second case, suppose that 𝑅 ≠ 𝐼 ⊕ 𝐽. Then, the cycle 

𝑅 − 𝐼 − 𝐼 ⊕  𝐽 − 𝐽 − 𝑅 is a cycle of length 4. The latter cycle has the least length unless 𝑅 possesses two 

different non-semisimple ideals whose intersection is a nonzero semisimple ideal, which yields by Theorem 

3.4 the existence of a cycle of length 3. □ 

 

Lemma 3.11: The distance between two nonzero simple (or semisimple) ideals in 𝐺𝑆(𝑅) is 2.  

Proof: Let 𝐼 and 𝐽 be two nonzero simple ideals of 𝑅. Then 𝐼 and 𝐽 are not adjacent, however, they are 

connected by the path 𝐼 − 𝑅 − 𝐽 which is a shortest path between 𝐼 and 𝐽. Thus, 𝑑(𝐼, 𝐽) = 2. Now, assume 

𝐼 and 𝐽 are two semisimple ideals of 𝑅. Then either the path 𝐼 − 𝑅 − 𝐽 or the path 𝐼 − 𝐼 ∩ 𝐽 − 𝐽 which is a 

shortest path between 𝐼 and 𝐽. This completed the proof. □ 

 

Theorem 3.12: The graph 𝐺𝑆(𝑅) is path connected if and only if 𝑅 is an Artinian ring. 

Proof: Suppose 𝐺𝑆(𝑅) is path connected and 𝑅 is not simple. Let 𝐼 be a nonzero ideal of 𝑅. Now, there is 

a path from 𝐼 to 𝑅. If the path has a length equal to 1, then 𝐼 − 𝑅 and hence 𝐼 is a semisimple ideal. If the 

path has a length of at least 2, then there exists an ideal 𝐽, 𝑅 such that 𝐽 − 𝐼. Thus, 𝐼 ∩ 𝐽 is a nonzero 

semisimple ideal contained in 𝐼. Thus there is 𝐾 is a nonzero simple ideal with 𝐾 ⊆ 𝐼 ∩ 𝐽 ⊆ 𝐼. As each 

nonzero ideal contains a nonzero simple ideal, we conclude that 𝑅 is Artinian. 

For the reverse, assume 𝑅 is an Artinian ring. Let 𝐼 and 𝐽 be two nonzero ideals. Now, there is nonzero 

simple ideals 𝐾 and 𝐿 with 𝐾 ⊆ 𝐼 besides 𝐿 ⊆ 𝐽. The path 𝐼 − 𝐾 − 𝐾 ⊕ 𝐿 − 𝐿 − 𝐽 connects 𝐼 and 𝐽. So, 

𝐺𝑆(𝑅) is path connected. □ 

 

Corollary 3.13: If 𝑅 is Artinian, and 𝐼 and 𝐽 are nonzero ideals, then 1 ≤ 𝑑(𝐼, 𝐽) ≤ 4. 

Proof: Suppose 𝑅 is Artinian, and 𝐼 and 𝐽 are nonzero ideals. By Theorem 3.12, 𝑑(𝐼, 𝐽) ≥ 1. We consider 

different cases. In the first case, assume that both ideals are simple, by Lemma 3.11, we have 𝑑(𝐼, 𝐽) = 2. 

In the second case, assume exactly one of them, say 𝐼, is simple. If 𝐼 ⊂ 𝐽, then 𝐼 − 𝐽 and therefore 𝑑(𝐼, 𝐽) =
1. Though, if 𝐼 ⊈ 𝐽, then 𝐼 ∩ 𝐽 = 0. Let 0 ≠ 𝐾 ⊊ 𝐽 be a simple ideal. Then, 𝐼 − 𝐼 ⊕ 𝐾 − 𝐽 is the shortest 

path between 𝐼 and 𝐽. So, 𝑑(𝐼, 𝐽) = 2. In the third case, assume neither of 𝐼 and 𝐽 is simple. If 𝐼 ∩ 𝐽 is 

nonzero semisimple, then 𝐼 − 𝐽 and thus 𝑑(𝐼, 𝐽) = 1. If 𝐼 ∩ 𝐽 is not semisimple, then it contains a nonzero 

simple ideal 𝐾. The path 𝐼 − 𝐾 − 𝐽 is the shortest path between 𝐼 and 𝐽 and hence 𝑑(𝐼, 𝐽) = 2. If 𝐼 ∩ 𝐽 = 0, 

then the path 𝐼 − 𝐾 − 𝐾 ⊕ 𝐿 − 𝐿 − 𝐽 is the shortest path between 𝐼 and 𝐽, where 𝐾 and 𝐿 are nonzero 

simple ideals of R contained in I and J, respectively. So, 𝑑(𝐼, 𝐽)  =  4. □ 

 

   Recall that a path component of a graph is the largest path connected subgraph (i.e., a connected 

subgraph that is not a subgraph of another connected subgraph). A graph may have more than one path 

component. A graph is connected if and only if the path component is unique. In addition, the diameter of 

a graph equals the supremum of the diameter of its path components. 
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Theorem 3.14: In 𝐺𝑆(𝑅), all the vertices with positive degree lie in one path component which is the path 

component containing 𝑅. The rest of components are isolated vertices. 

Proof: A discussion analogous to that in the proof of Corollary 3.13 leads us to the fact that any vertex of 

positive degree is connected to 𝑅 by a path of length less than 3. □ 

 

Definition 3.15: The component of 𝑅 mentioned in Theorem 3.14 is named the 𝑅-component of 𝐺𝑆(𝑅). 

        According to Theorem 3.14, we can, in many situations, identify 𝐺𝑆(𝑅) with its 𝑅-component, since 

we can carry the discussion of a disconnected 𝐺𝑆(𝑅) to its 𝑅- component.                

        The proof of the next corollary follows easily from Corollary 3.13 and Theorem 3.14. 

 

Corollary 3.16: 1 ≤ diam(𝐺𝑆(𝑅)) ≤ 4. Besides, diam(𝐺𝑆(𝑅)) = 1 if and only if the 𝑅-component of 

𝐺𝑆(𝑅) is a complete graph consisting of at least two vertices. 

Theorem 3.17: The graph 𝐺𝑆(𝑅) is complete if and only if every proper ideal of 𝑅 either simple or 

semisimple and every pair of ideals in 𝑅 have non-zero intersection. 

Proof: Assume that 𝐺𝑆(𝑅) is complete. Let 𝐼 be an ideal of 𝑅. By completeness, we have 𝐼 − 𝑅 and thus 𝐼 

is semisimple. Let 𝐼 and 𝐽 be an ideals of 𝑅. Thus, 𝐼 ∩ 𝐽 is semisimple, and hence 𝐼 ∩ 𝐽 ≠ (0). For the 

converse, assume that 𝐼 and 𝐽 be an ideals of 𝑅. By assumption 𝐼 and 𝐽 are simple or semisimple ideals. 

Thus, 𝐼 ∩ 𝐽 is semisimple ideal. Hence, the graph 𝐺𝑆(𝑅) is complete.  □ 

 

       The next corollary is a straight forward result from Theorem 3.17. 

 

Corollary 3.18: If 𝑅 is a semisimple ring, then 𝐺𝑆(𝑅) is not complete. 

Example 3.19: 𝐺𝑆(ℤ4) is 𝐾2, while 𝐺𝑆(ℤ2⨁ℤ2) is not complete. 

 

 We have seen so far that if 𝐺𝑆(𝑅) is not a null graph, then 1 ≤ diam(𝐺𝑆(𝑅)) ≤ 4. Surprisingly, 

diam(𝐺𝑆(𝑅)) never reaches 3 as demonstrated in the next theorem. 

 

Theorem 3.20: We have diam(𝐺𝑆(𝑅)) ≠ 3. 

Proof: Suppose 𝐺𝑆(𝑅) is not a null graph. By contrary way. Assume there exist two nonzero ideals of 𝑅 

such that 𝑑(𝐼, 𝐽) = 3. So that the shortest path connecting 𝐼 and 𝐽 has a length equal to 3. Let 𝐼 − 𝐾 − 𝐿 − 𝐽 

be such a shortest path. Thus we have 𝐼 is not adjacent to 𝐽, 𝐽 is not adjacent to 𝐾, 𝐼 is not adjacent to 𝐿, and 

at least one of 𝐾 and 𝐿 is not simple. We have 𝐼 ∩ 𝐾 and 𝐽 ∩ 𝐿 are nonzero semisimple ideals. Also, 𝐼 ∩ 𝐽 ∩
𝐿 = 0 (because if not, then the simplicity of 𝐽 ∩ 𝐿 implies 𝐼 ∩ 𝐽 ∩ 𝐿 = 𝐽 ∩ 𝐿, which in turn implies 𝐽 ∩ 𝐿 ⊆
𝐼, which yields that 𝐼 and 𝐽 are connected by the path 𝐼 − (𝐽 ∩ 𝐿) − 𝐽 of length 2. This contradicts that 

𝑑(𝐼, 𝐽) = 3. Similarly, we obtain that 𝐽 ∩ 𝐼 ∩ 𝐾 = 0. Now, let 𝑇 = (𝐼 ∩ 𝐾)⨁(𝐽 ∩ 𝐿). Then 𝐼 ∩ 𝑇 = 𝐼 ∩ 𝐾 

and 𝐽 ∩ 𝑇 = 𝐽 ∩ 𝐿 which are nonzero semisimple ideals. So, we have the path 𝐼 − 𝑇 − 𝐽 is a path connecting 

𝐼 and 𝐽 of length equal to 2, which is a illogicality to the assumption 𝑑(𝐼, 𝐽) = 3. In conclusion, we get that 

𝑑(𝐼, 𝐽) ≠ 3. □ 

4 THE BIPARTITE PROPERTY AND CLIQUES OF 𝑮𝑺(𝑹) 

  In this section, we study the clique number of 𝐺𝑆(𝑅). Also, here the conditions which make 𝐺𝑆(𝑅) 

bipartite are studied. Since the null graph is obviously bipartite, the importance here in our consideration is 

the non-null 𝐺𝑆(𝑅). Recall that 𝐺𝑆(𝑅) is not null if and only if 𝑅 possesses a proper nonzero simple ideal.  
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 We begin with the following corollary which is an outcome of Section 3. 

 

Corollary 4.1: If 3 < gr(𝐺𝑆(𝑅)) < ∞, then 𝐺𝑆(𝑅) is bipartite. 

Proof: Assume 3 < gr(𝐺𝑆(𝑅)) < ∞. Following the similar argument of the proof of Theorem 3.5, we get 

that no nonzero simple ideals are adjacent to each other and no non-simple ideals are adjacent to each other. 

Thus, the graph 𝐺𝑆(𝑅) is bipartite with parts 𝑊1 consisting of all nonzero simple ideals of 𝑅, and 𝑊2 

consisting of all non-simple ideals of 𝑅. □  

 

Example 4.2: In Example 3.9, 𝐺𝑆(ℤ4 ⊕ ℤ2) is bipartite by Corollary 4.1. 

 

Definition 4.3: Let 𝐼 ≠ 0 be an ideal of 𝑅. By 𝐺𝑆(𝑅, 𝐼), we mean the subgraph of 𝐺𝑆(𝑅) whose vertices are 

𝐼 and all vertices adjacent to 𝐼 along with the edges incident to these vertices. We call 𝐺𝑆(𝑅, 𝐼) the local 

semisimple-intersection graph of 𝐼. 

Theorem 4.4: The graph 𝐺𝑆(𝑅) is bipartite if and only if 𝐺𝑆(𝑅, 𝐼) is a star graph with center 𝐼, for every 

nonzero simple ideal 𝐼 of 𝑅. 

Proof: Assume 𝐺𝑆(𝑅) is a bipartite graph. Without lose of generality, assume 𝐺𝑆(𝑅) is not a null graph. 

Let 𝑉 and 𝑊 be a bipartition. Let 𝐼 be a nonzero simple ideal of 𝑅. Suppose that 𝐼 ∈ 𝑉. Then none the 

vertices of 𝑁(𝐼) belongs to 𝑉 and therefore they belong to 𝑊. Thus, all vertices of 𝑁(𝐼) are pairwise 

nonadjacent. This means, that 𝐺𝑆(𝑅, 𝐼) is a star graph with center 𝐼. □ 

 

       For the converse, assume that 𝐺𝑆(𝑅, 𝐼) is a star graph with center 𝐼, for every nonzero simple ideal 𝐼 ⊆
𝑅. Let 𝑉 be the set of all nonzero simple ideals of 𝑅, and 𝑊 be the set of the remaining (non-simple) ideals 

of 𝑅. By Remark 3.3, we have the vertices of 𝑉 are not adjacent to each other. On the other hand, let 𝐽, 𝐾 ∈
𝑊. Assume, for contrary, that 𝐽 − 𝐾. Then, 𝐽 ∩ 𝐾 is a nonzero simple ideal. Hence, 𝐽, 𝐾 ∈ 𝑉[𝐺𝑆(𝑅, 𝐽 ∩
 𝐾)]  =  𝑁(𝐽 ∩  𝐾), which contradicts that 𝐺𝑆(𝑅, 𝐽 ∩  𝐾) is a star graph with center 𝐽 ∩ 𝐾. Thus, we obtain 

that any two vertices of 𝑊 are not adjacent. Consequently, 𝐺𝑆(𝑅) is bipartite with bipartition 𝑉 and 𝑊. □ 

  

 In General, a bipartite graph may have more than one bipartition. However, the existence of the (𝑉,𝑊)-

bipartition of 𝐺𝑆(𝑅), where 𝑉 is the set of all nonzero simple ideals of 𝑅, and 𝑊 is the set of all non-simple 

ideals of 𝑅, is necessary and sufficient for 𝐺𝑆(𝑅) to be bipartite. We prove this in the next corollary, but 

before we do that we need to draw the attention of the reader to the fact that if an ideal does not include any 

simple ideal, then it is an isolated vertex which can be freely added to any part of a bipartition of 𝐺𝑆(𝑅). 

So, what maters when considering by partitions is the nonzero simple ideals and ideals containing anyone 

of them. 

 

Corollary 4.5: Assume 𝐺𝑆(𝑅) is not null. Then, 𝐺𝑆(𝑅) is bipartite if and only if the (𝑉,𝑊)-bipartition of 

𝐺𝑆(𝑅) exists, where 𝑉 is the set of all nonzero simple ideals of 𝑅, and 𝑊 is the set of all non-simple ideals 

of 𝑅. 

Proof: Assume 𝐺𝑆(𝑅) is bipartite. Let 𝑋 and 𝑌 be a bipartition. Since 𝐺𝑆(𝑅) is not null, then 𝑅 contains at 

least one nonzero simple (or semisimple) ideal. Without loss of generality, assume 𝑅 ∈  𝑌. Since 𝑅 is 

adjacent to every nonzero simple and semisimple ideals as Remark 3.3 states, then all nonzero simple ideals 

belong to 𝑋. Thus, all non-semisimple ideals containing simple ideals must belong to 𝑌. The isolated 

vertices are distributed randomly to 𝑋 and 𝑌. Now if we move all isolated vertices from 𝑋 to 𝑌, the new 
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bipartition is the (𝑉,𝑊)-bipartition with 𝑉 is 𝑋 after deleting the isolated vertices and 𝑊 is 𝑌 plus all the 

isolated vertices. The proof of the converse is quite obvious. □ 

 

 Recall that an ideal 𝐼 of a ring 𝑅 is large (or essential) if 𝐼 ∩ 𝐽 ≠ 0, for every nonzero ideal 𝐽 of 𝑅. In 

what follows, when we assume 𝐺𝑆(𝑅) is bipartite, we consider the (𝑉, 𝑊)-bipartition. 

 

Theorem 4.6: Suppose 𝐺𝑆(𝑅) is not null and bipartite. Now the next statements are equivalent: 

(1) 𝐺𝑆(𝑅) is complete bipartite. 

(2) The intersection of all non-simple ideals is 𝑆𝑜𝑐(𝑅). 

(3) 𝑆𝑜𝑐(𝑅) is an essential ideal. 

(4) 𝑅 is Artinian and diam(𝐺𝑆(𝑅)) ≤ 2. 

(5) 𝐺𝑆(𝑅) is path connected and diam(𝐺𝑆(𝑅)) ≤ 2. 

 

Proof: The proof is easy when 𝑅 contains only one nonzero simple ideal because 𝐺𝑆(𝑅) is a star graph and 

then (1) to (5) hold directly. Therefore, we assume that 𝐺𝑆(𝑅) contains more than one nonzero simple ideal. 

By Corollary 4.5, there exists the (𝑉,𝑊)-bipartition consisting of the set 𝑉 of all nonzero simple ideals and 

the set 𝑊 consisting of all non-simple ideals. 

1⇒ 2: Suppose 𝐺𝑆(𝑅) is complete bipartite. Then every non-simple ideal is adjacent to every simple ideal. 

Hence, every non-simple ideal contains the socle of 𝑅. Thus, 𝑆𝑜𝑐(𝑅) is included in the intersection of all 

non-simple ideals. Now, 𝑆𝑜𝑐(𝑅) is not simple and hence it includes the intersection of all non-simple ideals. 

At this point, we conclude that 𝑆𝑜𝑐(𝑅) is equal to the intersection of all non-simple ideals. 

2 ⇒ 3: The proof is trivial. 

3 ⇒ 4: Assume that 𝑆𝑜𝑐(𝑅) is an essential ideal of 𝑅. The proof that 𝑅 is Artinian is quite easy and well 

known in the literature. We only need to show that diam(𝐺𝑆(𝑅)) ≤ 2. By Lemma 3.11, the distance 

between any two nonzero simple (or semisimple) ideals is 2. Let 𝐼 ∈ 𝑉 and 𝐽 ∈ 𝑊. If 𝐼 ⊊ 𝐽, then 𝐼 − 𝐽 and 

𝑑(𝐼, 𝐽) = 1. Assume now 𝐼 ⊈ 𝐽. Since 𝑆𝑜𝑐(𝑅) is large, then 𝑆𝑜𝑐(𝑅) ∩ 𝐽 ≠ 0, which means that 𝐽 contains 

a nonzero simple ideal 𝐾 ≠ 𝐼. Then 𝐼 − 𝐼 ⊕ 𝐾 − 𝐽 is a path between 𝐼 and 𝐽 of length 2. Next, assume 𝐼, 

𝐽 ∈ 𝑊. We have 𝐼 ∩ 𝐽 is not simple. Since 𝑆𝑜𝑐(𝑅) is essential, the ideal 𝐼 ∩ 𝐽 contains a nonzero simple 

ideal 𝐾. Now the path 𝐼 − 𝐾 − 𝐽 between 𝐼 and 𝐽 has length 2. 

4⇒ 5: Apply Theorem 3.12. 

5⇒1: Assume 𝐺𝑆(𝑅) is path connected such that diam(𝐺𝑆(𝑅)) ≤ 2. Let 𝐼 ∈ 𝑉 and 𝐽 ∈ 𝑊. Then, there 

exists a path connecting 𝐼 and 𝐽. By assumption, the length of the shortest path connecting 𝐼 and 𝐽 equals 1 

or 2. However, if the length of this shortest path is 2, then we get a contradiction to the hypothesis that says 

“𝐺𝑆(𝑅) is bipartite”. So, the length of this shortest path is 1. That is, 𝐼 is adjacent to 𝐽. This ends the proof.  

□ 

 

Definition 4.7: Let 𝐼 be a nonzero semisimple ideal of 𝑅. We say that the nonzero ideals 𝐽 and 𝐾 are 

adjacent through 𝐼 if 𝐽 ∩ 𝐾 = 𝐼. 

Proposition 4.8: Every clique of 𝐺𝑆(𝑅) contains at most one nonzero simple ideal. 

Proof: The proof is straightforward from Remark 3.3. □  

  It follows from Proposition 4.8 that there are two types of cliques in 𝐺𝑆(𝑅). The first type of cliques 

contains no simple ideals, while the second type of cliques contains exactly one nonzero simple ideal. The 

next example exhibits these types of cliques. 

 

Example 4.9: Let 𝑅 = 𝐼⨁𝐽⨁𝐾 be a semisimple ring. Then, the subgraph 𝐼⨁𝐽 − 𝐽⨁𝐾 − 𝐼⨁𝐾 − 𝐼⨁𝐽 is a 

clique whose vertices are not simple ideals. However, the subgraph 𝐼 ⨁𝐽 − 𝐼 − 𝐼⨁𝐾 − 𝐼⨁ 𝐽 is a clique 

with one simple nonzero ideal as Proposition 4.8 emphasizes. 
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       In the next work, we are going to study each type of cliques in order to discover the clique number of 

𝐺𝑆(𝑅).  

Theorem 4.10: Let Ω be a clique containing one nonzero simple (or semisimple) ideal 𝐼. Then Ω consists, 

beside the vertex 𝐼, vertices in 𝑁(𝐼) that are adjacent to each other through 𝐼. 

Proof: Let 𝐽 and 𝐾 be two vertices in Ω. Then 𝐽 ∩ 𝐾 is nonzero simple. Since 𝐼 − 𝐽 and 𝐼 − 𝐾, we get 𝐽, 

𝐾 ∈ 𝑁(𝐼) and 𝐼 ⊆ 𝐽 ∩ 𝐾. Thus, 𝐼 = 𝐽 ∩ 𝐾. The converse is obvious. □ 

 

Corollary 4.11: Let Ω be a clique containing one nonzero simple ideal 𝐼. Then |𝑉[Ω]| > 2 if and only if 

𝑅 < 𝑉[Ω] and 𝑉[Ω] has at least two proper non-semisimple ideals (that are adjacent to 𝐼). 

Proof: Suppose 𝑉[Ω] contains at least 3 vertices. Since 𝐼 must be among the vertices of Ω, by Theorem 

4.10, the other vertices are non-simple ideals that are adjacent to each other through 𝐼. By Remark 3.3, 

neither of the non-simple vertices equals 𝑅. The reverse is trivial. □ 
  

Definition 4.12: [12] Let 𝐼 be a nonzero simple ideal of 𝑅. Then, the largest clique of 𝐺𝑆(𝑅) containing 𝐼 

is named the maximal clique induced by 𝐼. 

        Let 𝐼 be a nonzero simple ideal of 𝑅. Then the clique 𝐼 − 𝑅 is always a maximal clique induced by 𝐼, 

which we call the trivial maximal clique induced by 𝐼. It is not difficult to see from Corollary 4.11 that if 

|𝑁(𝐼)| = 1, then the trivial maximal clique induced by 𝐼 is the only maximal clique induced by 𝐼. However, 

if |𝑁(𝐼)| > 1, Then there is another maximal clique induced by 𝐼 which consists, in addition to 𝐼, of all 

proper non-simple ideals in 𝑁(𝐼) that are adjacent to each other through 𝐼. We denote this non-trivial 

maximal clique by Ω(𝐼). Notice that |𝑉[Ω(𝐼)]| ≥ 2. Note that if 𝐼 is semisimple but not simple ideal, we 

have 𝐼 − 𝑅 is always a not clique in 𝐺𝑆(𝑅). 

  

Example 4.13: In 𝐺𝑆(ℤ4), the maximal cliques induced by the ideal 2ℤ4 are only the trivial maximal clique 

2ℤ4 − ℤ4. 

 

Example 4.14: In Example 4.9, Ω(𝐼) is 𝐼 − 𝐼⨁𝐽 − 𝐼⨁𝐾 − 𝐼. Thus |Ω(𝐼)| = 3. 

 

5 CONCLUSION 

        In this paper, we have defined and studied an undirected graph 𝐺𝑆(𝑅), the semisimple-intersection 

graph of a ring 𝑅 where the vertex set all nonzero ideals of 𝑅 and two distinct vertices 𝐼 and 𝐽 are adjacent 

if and only if 𝐼 ∩ 𝐽 is a nonzero semisimple ideal. We observed that the graph 𝐺𝑆(𝑅) is complete if and only 

if every proper ideal of 𝑅 either simple or semisimple and every pair of ideals in 𝑅 have non-zero 

intersection. We studied girth, diameter, clique number, and bipartite property of the graph 𝐺𝑆(𝑅). 
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