

8th International Conference on Combinatorics, Cryptography, Computer Science and Computation

Fuzzy e-Cosmall Submodules

Ahmed H. Alwan Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq ahmedha math@utq.edu.iq

ABSTRACT

Let M be a module, μ and ν fuzzy submodules of M with $\mu \subseteq \nu$. Then μ is called a fuzzy e-cosmall submodule of ν in M if $\nu/\mu \ll_{fe} M/\mu (= \chi_M/\mu^*)$. In this paper we investigate fuzzy e-cosmall submodules. We also give some properties of fuzzy *e*-hollow modules.

KEYWORDS: Fuzzy small submodules, Fuzzy essential-small submodules, Fuzzy cosmall submodules, Fuzzy e-cosmall submodules, Fuzzy e-hollow modules.

1 **INTRODUCTION**

After the introduction of fuzzy sets by Zadeh in 1965 [9], a number of applications of this fundamental notion have come up. Naegoita and Ralescu [4] applied this notion to modules and defined fuzzy submodules of a module. So, fuzzy finitely generated submodules, fuzzy quotient modules [5], radical of fuzzy submodules, and primary fuzzy submodules [7, 2] were investigated. Kalita [12] defined a fuzzy essential submodule and proved some characteristics of such submodules. In 2011, Rahman and Saikia studied the concepts of fuzzy small submodules and Fuzzy cosmall submodules, in [6]. By using this idea, in [10] the authors investigated the Fuzzy cosmall submodules. Nimbhorkar and Khubchandani in 2020 [11] defined fuzzy essential-small (e-small) submodules. In this paper, we defined and studied fuzzy e-small submodules, fuzzy ehollow modules and fuzzy e-cosmall submodules of a module. Throughout this paper R will denote an arbitrary associative ring with identity and M will be unital right R-module.

2 **PRELIMINARIES**

In this section, we briefly introduce some definitions and results of fuzzy sets and fuzzy submodules, which we need to develop our paper. By a fuzzy set of a module M we mean any mapping μ from M to [0, 1]. The support of a fuzzy set μ , denoted by μ^* , is a subset of M defined by $\mu^* = \{x \in M \mid \mu(x) > 0\}$. The subset μ_* of M is defined as $\mu_* = \{x \in M \mid \mu(x) = 1\}$. We denote the set of all fuzzy submodules of M by F(M).

Definition 2.1. [3] Let M be an R-module. A fuzzy subset μ of M is said to be a fuzzy submodule,

if for every $x, y \in M$ and $r \in R$ the following conditions are satisfied:

(i) $\mu(0) = 1;$ (ii) $\mu(x - y) \ge min\{\mu(x), \mu(y)\};$

(iii) $\mu(rx) \ge \mu(x)$.

Definition 2.2. [3] Let $\mu, \nu \in F(M)$ be such that $\mu \subseteq \nu$. Then the quotient of ν with respect to μ , is a fuzzy submodule of M/μ^* , denoted by ν/μ , and is defined as follows:

 $(\nu/\mu)([x]) = \sup\{\nu(z) \mid z \in [x]\}, \forall x \in \nu^*$

where [x] denotes the coset $x + \mu^*$.

Lemma 2.3. [3] μ_* is a submodule of *M* if and only if μ is a fuzzy submodule of *M*. Let $N \leq M$, then characteristic function of $N(\chi_N)$ is defined as

$$\chi_N(x) = \begin{cases} 1, & \text{if } x \in N \\ 0, & \text{otherwise.} \end{cases}$$

Lemma 2.4. [3] Let $\mu \in F(M)$. Then $\mu_* = M$ if and only if $\mu = \chi_M$. Also if $\sigma \in F(M)$ and $\mu \subseteq \sigma$, then $\mu_* \subseteq \sigma_*$.

Lemma 2.5. [1] Let $\mu, \sigma \in F(M)$, then $(\mu \cap \sigma)_* = \mu_* \cap \sigma_*$, $(\mu \cup \sigma)_* = \mu_* \cup \sigma_*$. Further if μ and σ have finite images then $(\mu + \sigma)_* = \mu_* + \sigma_*$, where the sum of two fuzzy submodules is defined as $(\mu + \sigma)(x) = \sup\{\min\{\mu(a), \sigma(b)\} \mid a, b \in M, x = a + b\}$.

Definition 2.6. [3] Let $\mu, \sigma \in F(M)$. The sum $\mu + \sigma$ is called the direct sum of μ and σ if $\mu \cap \sigma = \chi_0$ and it is denoted by $\mu \oplus \sigma$.

Definition 2.7. [1] A fuzzy submodule $\mu \neq \chi_0$ of *M* is said to be fuzzy indecomposable if there is not $(\chi_0, \chi_M \neq)\sigma, \nu \in F(M)$ such that $\mu = \nu \oplus \sigma$.

Definition 2.8. [1] Let *M* be an *R*-module and $\mu \in F(M)$. Then μ is called a fuzzy small submodule of *M* if for any $\nu \in F(M)$, $\mu + \nu = \chi_M$ implies that $\nu = \chi_M$. It is indicated by the notation $\mu \ll_f M$ or $\mu \ll_f \chi_M$. Equivalently, if for any $\nu \in F(M)$ satisfying $\nu \neq \chi_M$ implies $\mu + \nu \neq \chi_M$.

It is obvious that χ_0 is always a fuzzy small submodule of *M*.

A submodule N of M is named small in M, symbolized by $N \ll M$, if $M \neq N + K$ for any proper submodule K of M [8].

Lemma 2.9. [1] Let $\mu \in F(M)$. Then $\mu \ll_f M$ if and only if $\mu_* \ll M$.

Recall that [8] a submodule N of an R-module M is called an essential submodule of M, denoted by $N \leq M$, in case $K \cap N \neq 0$ for every submodule $K \neq 0$.

Definition 2.10. [11] Let *M* be an *R*-module and $\mu \in F(M)$. Then μ is called a fuzzy essential submodule of *M*, if for any $\nu \in F(M)$ satisfying $\mu \cap \nu = \chi_{\theta}$ implies $\nu = \chi_{\theta}$ and is denoted by $\mu \leq_f M$.

Theorem 2.11. [12] A submodule *N* of an *R*-module *M* is essential in *M* if and only if χ_N is an essential fuzzy submodule of *M*.

Theorem 2.12. [12] Let μ be a non-zero fuzzy submodule of an *R*-module *M*. Then $\mu \trianglelefteq_f M$ if and only if $\mu^* \trianglelefteq M$.

3 FUZZY E-HOLLOW MODULES AND FUZZY E-COSMALL SUBMODULES

In this section, we introduce the concept of a fuzzy essential-cosmall (for simply e-cosmall) submodule. We obtain some properties of this concept. Now onwards all the fuzzy sets involved in this paper have finite images.

Let μ and σ be any two fuzzy submodule of M such that $\mu \subseteq \sigma$, then μ is called a fuzzy submodule of σ . μ is called a fuzzy small submodule in σ , denoted by $\mu \ll_f \sigma$, if $\mu \ll_f \sigma^*$.

Definition 3.1. [15] Let *N* be a submodule of an *R*-module *M*. *N* is said to be *e*-small in *M* (denoted by $N \ll_e M$), if N + L = M with $L \trianglelefteq M$ implies L = M.

For more information about *e*-small submodules we refer to [14].

Definition 3.2. [11] Let *M* be an *R*-module and let $\mu \in F(M)$. Then μ is called a fuzzy *e*-small (essential-small or generalized small) submodule of *M* if for any essential submodule $\sigma \in F(M)$, $\mu + \sigma = \chi_M$ implies that $\sigma = \chi_M$.

Theorem 3.3. [11] Let $\mu \in F(M)$. Then $\mu \ll_{fe} M$ if and only if $\mu_* \ll_e M$.

We note that every fuzzy small submodule of an *R*-module is a fuzzy *e*-small submodule. However, the following example shows that the converse need not be true.

Example 3.4. Let $R = \mathbb{Z}$, $M = \mathbb{Z}_{24}$.

Define $\mu: M \rightarrow [0,1]$ by,

 $\mu(x) = \begin{cases} 1, & \text{if } x \in \{0, 8, 16\}, \\ \alpha, & \text{if } x \notin \{0, 8, 16\}, \text{where } 0 \le \alpha < 1. \end{cases}$

We note that $\mu_* = \{0, 8, 16\}$ is an e-small submodule of \mathbb{Z}_{24} . Hence, μ is a fuzzy e-small submodule of \mathbb{Z}_{24} by Theorem 3.3. But, $\mu_* = \{0, 8, 16\}$ is not a small submodule of \mathbb{Z}_{24} and so by Lemma 2.9, μ is not a fuzzy small submodule of \mathbb{Z}_{24} .

Recall that [13] the module M is called an e-hollow (or generalized hollow) module if every proper submodule of M is e-small (or generalized small) in M. In this case, it is clear that every hollow module is an e-hollow module.

Definition 3.5. [10] Let *M* be an *R*-module. χ_M is said to be a fuzzy hollow module, if every proper fuzzy submodule of χ_M is fuzzy small submodule in χ_M .

Similar to Definition 3.5, we have the following definition.

Definition 3.6. Let *M* be an *R*-module. χ_M is said to be a fuzzy *e*-hollow module, if every proper fuzzy submodule of χ_M is fuzzy *e*-small submodule in χ_M or *M* has no proper fuzzy essential submodules.

In this case, it is clear that every fuzzy hollow module is a fuzzy *e*-hollow module.

Similar to [10, Proposition 3.2], we have the following proposition.

Proposition 3.7. Let *M* be a module. Then:

(i) If χ_M is a fuzzy *e*-hollow module, then every factor of χ_M is fuzzy *e*-hollow.
(ii) If χ_M is fuzzy *e*-hollow, then χ_M is fuzzy indecomposable.
(iii) If σ ≪_{fe} χ_M and χ_M/σ is fuzzy *e*-hollow, then χ_M is fuzzy *e*-hollow.

Proof. (i) By using [1, Proposition 3.8].

(ii) It is clear.

(iii) Let $\mu \in F(M)$ be a proper fuzzy submodule of χ_M . Assume that $\mu + \nu = \chi_M$ for ν is fuzzy essential submodule of χ_M . Then $\mu + \nu + \sigma = \chi_M$. Hence $(\mu + \sigma)/\sigma + (\nu + \sigma)/\sigma = \chi_M/\sigma$. Since χ_M/σ is fuzzy *e*-hollow and $(\nu + \sigma)/\sigma$ is fuzzy essential submodule of χ_M/σ , then $(\nu + \sigma)/\sigma = \chi_M/\sigma$. Thus $\nu + \sigma = \chi_M$. As $\sigma \ll_{fe} \chi_M, \nu = \chi_M$. So χ_M is fuzzy *e*-hollow. \Box

Let *M* be a module and $N \leq L \leq M$. Recall that *N* is called a cosmall submodule of *L* in *M* if $L/N \ll M/N$. The notation $N_M^{\subseteq L}$ indicates that *N* is a cosmall submodule of *L* in *M* [8]. In [6], authors generalized this concept in fuzzy settings. *N* is called an e-cosmall submodule of *L* in *M* if $L/N \ll_e M/N$. The notation $N_M^{\subseteq -cs} L$ indicates that *N* is a e-cosmall submodule of *L* in *M*. In this section, we define fuzzy e-cosmall submodules.

Definition 3.8. [6] Let *M* be a module and Let $\mu, \nu \in F(M)$ with $\mu \subseteq \nu$. Then μ is called a fuzzy cosmall submodule of ν in *M* if $\nu/\mu \ll_f M/\mu$ (= χ_M/μ^*). The notation μ_M^{fcs} ν indicates that μ is a fuzzy cosmall submodule of ν in *M*.

Definition 3.9. Let *M* be a module and Let $\mu, \nu \in F(M)$ with $\mu \subseteq \nu$. Then μ is called a fuzzy ecosmall submodule of ν in *M* if $\nu/\mu \ll_{fe} M/\mu$ (= χ_M/μ^*). The notation $\mu \stackrel{fe-cs}{\underset{M}{\hookrightarrow}} \nu$ indicates that μ is a fuzzy e-cosmall submodule of ν in *M*. **Example 3.10.** Consider $M = \mathbb{Z}_8 = \{0, 1, 2, 3, 4, 5, 6, 7\}$ under addition modulo 8. Then *M* is a module over the ring \mathbb{Z} . Let $S = \{0, 2, 4, 6\}$. Define $\mu: M \rightarrow [0, 1]$ as follows:

$$\mu(x) = \begin{cases} 1 & \text{if } x \in S \\ \alpha & \text{otherwise} \end{cases}$$

where $0 \le \alpha < 1$. Then χ_0 is a fuzzy e-cosmall submodule of μ in M.

Similar to [10, Proposition 3.5], we have the following proposition.

Proposition 3.11. Let $\mu, \sigma \in F(M)$. Then $\mu \stackrel{fe-cs}{\underset{M}{\hookrightarrow}} \sigma$ if and only if $\mu_* \stackrel{e-cs}{\underset{M}{\hookrightarrow}} \sigma_*$. **Proof.** Let $\mu, \sigma \in F(M)$. $\mu \stackrel{fe-cs}{\underset{M}{\hookrightarrow}} \sigma$ if and only if $\sigma/\mu \ll_{fe} M/\mu$. By Theorem 3.3, $(\sigma/\mu)_* \ll_e (M/\mu)_*$. Thus, $\sigma_*/\mu_* \ll_e M/\mu_*$. Hence, $\mu_* \stackrel{e-cs}{\underset{M}{\hookrightarrow}} \sigma_*$. \Box

Proposition 3.12. Let *M* be a module. If $\mu \subseteq \sigma \subseteq \chi_M$ and $\sigma = \mu + \nu$, where $\nu \ll_{fe} \mu$, Then μ is a fuzzy e-cosmall submodule of σ in *M*.

Proof. Let $\chi_M = \sigma + \gamma$ for some $\gamma \in F(M)$. Then $\chi_M = \mu + \nu + \gamma = \mu + \gamma$, since $\nu \ll_{fe} M$. Thus, by [6, Theorem 4.24], μ is a fuzzy cosmall submodule of σ in M. Hence, μ is a fuzzy e-cosmall submodule of σ in M. \Box

Definition 3.13. [3] Let X and Y be any two nonempty sets, and $f: X \to Y$ be a mapping. Let μ be a fuzzy subset of X and σ a fuzzy subset of Y, then the image $f(\mu)$ and the inverse image $f^{-1}(\sigma)$ are defined as follows: for all $y \in Y$

$$f(\mu)(y) = \begin{cases} \sup\{\mu(x) | x \in X, f(x) = y\} \\ 0 & \text{otherwise} \end{cases} \quad \text{if } f^{-1}(y) \neq \emptyset$$

And $f^{-1}(\sigma)(x) = \sigma(f(x))$ for all $x \in X$.

Lemma 3.14. Let $f: M \to N$ be an epimorphism. If $\mu \in F(M)$ and $\sigma \in F(N)$, then:

(iv) $f(\mu)_* = f(\mu_*);$ (v) $f^{-1}(\sigma)_* = f^{-1}(\sigma_*).$

Proof. (i) Let $x \in f(\mu)_*$, then $(f(\mu))(x) = 1$. Thus $\sup\{\mu(y) \mid f(y) = x\} = 1$. Thus $\mu(y) = 1$ for some $y \in f^{-1}(x)$. Then $y \in \mu_*$, where f(y) = x, that is, $x \in f(\mu_*)$. So $f(\mu)_* \subseteq f(\mu_*)$. Conversely, let $x \in f(\mu_*)$, then x = f(y), for some $y \in \mu_*$. So $y \in f^{-1}(x)$, where $\mu(y) = 1$. Thus $\sup\{\mu(y) \mid y \in f^{-1}(x)\} \ge \mu(y) = 1$. Hence $(f(\mu))(x) = 1$, and so $x \in f(\mu)_*$. Therefore, the equality follows.

(ii) $x \in f^{-1}(\sigma)_*$ if and only if $f^{-1}(\sigma)(x) = 1$ if and only if $\sigma(f(x)) = 1$ if and only if $f(x) \in \sigma_*$ if and only if $x \in f^{-1}(\sigma_*)$. \Box

Theorem 3.15. Let $f: M \to N$ be an epimorphism. If $\mu \subseteq \nu \subseteq \chi_M$ and $\mu \stackrel{fe-cs}{\underset{M}{\hookrightarrow}} \nu$, then $f(\mu) \stackrel{fe-cs}{\overset{\hookrightarrow}{N}} f(\nu).$

Proof. Let $\sigma \subseteq \chi_N$ and $f(\nu) + \sigma = \chi_N$. Then, by Proposition 3.12 and Lemma 3.14, $f(\nu_*) + \sigma_* =$ N. Since f is an epimorphism, there exists $K \leq M$ such that $f(K) = \sigma_*$. It is clear that $K = (\chi_K)_*$ and so $f(K) = f((\chi_K)_*) = \sigma_*$. Hence $f(\nu_* + (\chi_K)_*) = f(\nu_*) + f((\chi_K)_*) = N = f(M)$. So $\nu_* + (\chi_K)_* = M$. By Lemma 2.5 and Lemma 2.4, $\nu + \chi_K = \chi_M$. By hypothesis, $\mu + \chi_K = \chi_M$. Then $\mu_* + (\chi_K)_* = M$. Thus $f(\mu_*) + f((\chi_K)_*) = N$, so $f(\mu_*) + \sigma_* = N$. So $f(\mu) + \sigma = \chi_N$. By [6, Theorem 4.24], $f(\mu) \stackrel{f_{i}}{\overset{\varsigma}{N}} f(\nu)$. Hence, $f(\mu) \stackrel{f_{i}}{\overset{\varsigma}{N}} f(\nu)$. \Box

Theorem 3.16. Let $f: M \to N$ be an epimorphism. If $\nu \subseteq \sigma \subseteq \chi_N$, then $\nu \stackrel{fe-cs}{\underset{N}{\hookrightarrow}} \sigma$ if and only if $f^{-1}(\nu) \overset{fe-cs}{\overset{\hookrightarrow}{\underset{M}{\to}}} f^{-1}(\sigma).$

Proof. Let $\mu \in F(M)$ and $f^{-1}(\sigma) + \mu = \chi_M$. By Proposition 3.12, $(f^{-1}(\sigma))_* + \mu_* = M$. From **Proof.** Let $\mu \in F(M)$ and $f''(\sigma) + \mu = \chi_M$. By Proposition 3.12, $(f''(\sigma))_* + \mu_* = M$. From Lemma 3.14, $f^{-1}(\sigma_*) + \mu_* = M$. Thus $\sigma_* + f(\mu_*) = N$. Using Proposition 3.11, $\nu_* \stackrel{\hookrightarrow}{N} \sigma_*$, and so $\nu_* + f(\mu_*) = N$. Hence $f^{-1}(\nu_*) + \mu_* = M$. Then $f^{-1}(\nu) + \mu = \chi_M$. Therefore $f^{-1}(\nu) \stackrel{fcs}{\to} f^{-1}(\sigma)$, by [6, Theorem 4.24]. Thus, $f^{-1}(\nu) \stackrel{fe-cs}{\to} f^{-1}(\sigma)$. Conversely, let $\sigma + \mu = \chi_N$ for some $\mu \in F(M)$. Then $\sigma_* + \mu_* = N$, so $f^{-1}(\sigma_*) + f^{-1}(\mu_*) = M$. Thus $f^{-1}(\sigma) + f^{-1}(\mu) = \chi_M$. Hence $f^{-1}(\nu_*) + f^{-1}(\mu_*) = M$, then $\nu_* + \mu_* = N$.

So $\nu + \mu = \chi_N$. Therefore $\nu \bigwedge_{N}^{f_{cs}} \sigma$. Hence, $\nu \bigvee_{N}^{f_{e-cs}} \sigma$. \Box

4 CONCLUSION

In this paper, we have defined and studied a fuzzy e-cosmall submodules. We observed that if $f: M \rightarrow M$ *N* be an epimorphism with $\mu \subseteq \nu \subseteq \chi_M$ and $\mu \stackrel{fe-cs}{\stackrel{\leftrightarrow}{M}} \nu$, then $f(\mu) \stackrel{fe-cs}{\stackrel{\leftrightarrow}{N}} f(\nu)$. We also studied fuzzy *e*hollow modules.

5 ACKNOWLEDGEMENTS

I would like to thank the referee for his/her careful reading of the paper and constructive comments and suggestions that have improved the quality of this paper.

REFERENCES

- [1] D. K. Basnet, N. K. Sarma and L. B. Singh, Fuzzy superfluous submodule, In Proceedings of the 6th IMT-GT Conference on Mathematics, Statistics and Its Applications (2010), 330-335.
- [2] R. Kumar, S. K. Bhambri and P. Kumar, Fuzzy submodules: some analogues and deviations, Fuzzy Sets and Systems **70**(1995), 125-130.
- [3] J. N. Mordeson and D. S. Malik, Fuzzy Commutative Algebra, World Scientific, River Edge, NJ, USA, 1998.

- [4] C. V. Naegoita and D. A. Ralescu, Application of Fuzzy Sets in system Analysis, Birkhauser, Basel, Switzerland, 1975.
- [5] F. Z. Pan, Fuzzy finitely generated modules, Fuzzy Sets and Systems, 21(1987), 105-113.
- [6] S. Rahman and H. K. Saikia, Fuzzy small submodule and jacobcon L-radical, Int. J. Math. Math. Sci. 1(2011), 1-12.
- [7] F. I. Sidky, On radicals of fuzzy submodules and primary fuzzy submodules, Fuzzy Sets and Systems 119(2001), 419-425.
- [8] R. Wisbauer, Foundations of module and ring theory, Gordon and Breach, (1991).
- [9] L. A. Zadeh, Fuzzy sets, Inform. and Comput. 8(1964), 338-353.
- [10] T. Amouzegar and Y. Talebi, Fuzzy cosmall submodules, Annals Fuzzy Math. and Informatics 8(2014), 1-5.
- [11] S. K. Nimbhorkar and J. A. Khubchandani, Fuzzy essential-small submodules and fuzzy smallessential submodules, Journal of Hyperstructures, 9(2), 2020, 52-67.
- [12] M. C. Kalita, A study of fuzzy algebraic structures: some special types, Ph.D. Thesis, Gauhati University, Gauhati, India, 2007.
- [13] Koşar B., Nebiyev C., and Sokmez N, G-supplemented modules, Ukrainian Math J. 67(6), 2015, 861-864.
- [14] A. H. Alwan, g-Coatomic modules, Al-Bahir Journal for Engineering and Pure Sciences, 2(2), 2023, Article 9.
- [15] D. X. Zhou and X. R. Zhang, Small-essential submodules and morita duality, Southeast Asian Bull. Math., 35(6), 2011, 1051-1062.