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Abstract
For a connected graph G, we denote the number of spanning trees in this graph by τ(G). Although, the

Kirchhoff’s Matrix Tree theorem provides a relation for the exact solution of this problem, but computing
this exact solution requires finding the Laplacian determinant, which is complicated and time-consuming
when the number of vertices increases. Therefore, presenting an upper bound is important for this
problem. In this paper, we study the problem of counting the number of spanning trees in the square
lattice graph Gn with n2 vertices, and present two upper bounds τ(Gn) < 24 × 34(n−2) × 4(n−2)2 and
τ(Gn) <

∏n
i=1

(4(n−i)
4(n−i)

2

)
for the number of spanning trees in this graphs.
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1 Introduction

Counting spanning trees in a graph or lattice is one of the long-standing and favorite problems in physics
and mathematics [1, 2, 3]. Let G = (V,E) be a simple connected graph with a set of vertices V and a set
of edges E, so that n = |V | is the number of vertices and e = |E| is the number of edges of the graph. A
spanning tree T (V,E′) is a subgraph of G(V,E) such that it contains all the vertices of G and its edge set
is E′ ⊆ E, but has no cycle and e = n− 1. We denote the number of spanning trees in a graph G by τ(G).
In this paper, we investigate the problem of counting the number of spanning trees in the square lattice
graphs. A square lattice Gn is an n × n lattice graph with the set of vertices V = {1, · · · , n} × {1, · · · , n}
and both vertices (i, j) and (i′, j′) that are adjacent if |i − i′| + |j − j′| = 1. Square lattices are important
in statistical physics [4].

One of the fascinating results presented by a German physicist named Gustav Kirchhoff in the middle
of the 19th century is the Kirchhoff’s Matrix Tree theorem, which could calculate the number of spanning
trees in a graph.

Theorem 1.1 (Kirchhoff′s Matrix Tree Theorem [5]). Let G(V,E) be an undirected graph with n vertices,
then for the Laplacian graph L = {lij}, the number of spanning trees in G can be calculated as follows

τ(G) = det(L′(j))
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where L′(j) is a matrix that is obtained by choosing a vertex vj and removing the jth row and column from
the matrix L and

lij =


deg(vi) if i = j

−1 if i ̸= j and vi adjacent to vj

0 Otherwise

Although, the Kirchhoff’s Matrix Tree theorem provides a relation for calculating the number of spanning
trees in a graph, but with the increasing the number of vertices and the size of the Laplacian determinant,
these calculations become complicated and time-consuming. Therefore, in many cases, we seek to provide
an upper bound for this problem [6, 7, 8, 9]. In this paper, we present two upper bounds for the number of
spanning trees in a square lattice in terms of the number of vertices.

2 Main results

In this section, we present two upper bounds for the number of spanning trees in a square lattice. We have
the first bound as follows.

Theorem 2.1. Let Gn be a square lattice graph with n2 vertices, then we have the following upper bound
for the number of spanning trees in the square lattice graph Gn:

τ(Gn) < 24 × 34(n−2) × 4(n−2)2 .

Proof. Since a spanning tree must contain all vertices of Gn, suppose that we number the vertices of a
square lattice from 1 to n2 and then start with vertex number 1 and choose one of the vertices connected to
it, and repeat this process for all vertices. According to this process, because a square lattice has 4 vertices
of degree 2, 4(n − 2) vertices of degree 3 and (n − 2)2 vertices of degree 4, we have 24 × 34(n−2) × 4(n−2)2

choices to perform this process. Therefore, the number of spanning trees in a square lattice graph cannot
be greater than this value, and therefore this value is an upper bound for this problem.

Now, we want to give another upper bound for this problem using another method.

Theorem 2.2. For a square lattice graph Gn with n2 vertices, we have the following upper bound for the
number of spanning trees in Gn:

τ(Gn) <
n∏

i=1

(
4(n− i)
4(n−i)

2

)
.

Proof. Suppose, we want to calculate the number of spanning trees in a square lattice graph Gn with n2

vertices. For this purpose, consider two square lattice graphs Gn, Gn−1 and their difference as shown in
Figure 1. Consider we have a spanning tree Tn−1 in a square lattice graph Gn−1 with (n− 1)2 vertices.

Now, suppose that according to Figure 2, we want to add new edges and vertices to the spanning tree
Tn−1 to find a spanning tree Tn of the square lattice graph Gn. It is clear that no edge from the square
lattice graph Gn−1 cannot be added to the spanning tree Tn−1, because it creates a cycle. Therefore, the
edges must be from the edges set E(Gn−Gn−1). Since, for a square lattice graph Gn, the number of vertices
is n2 and the number of edges is 2n(n− 1), so, the number of these reminded edges is:

|E(Gn)| − |E(Gn−1)| = 2n(n− 1)− 2(n− 2)(n− 1)
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G3 G4 G4 −G3

(a) (b) (c)

Figure 1: Two square lattice graphs G3 and G4 and the set of edges related to the difference of these two
graphs.

= 2n2 − 2n− 2(n2 − 2n− n+ 2)

= 4n− 4

= 4(n− 1).

On the other hand, in order to get from spanning tree Tn−1 to the spanning tree Tn, which is a spanning
tree of Gn, we need to select 4(n−1)

2 + 1 edges from the 4(n− 1) remained edges. See Figure 2.

T3 T4G4 −G3

(a) (b) (c)

Figure 2: Obtaining spanning tree T4 from the spanning tree T3 by selecting the number of edges from the
graph G4 −G3.

Therefore, we will have the following relation between the number of spanning trees of the square lattice
graphs Gn and Gn−1:

τ(Gn) < τ(Gn−1)×
( 4(n−1)

4(n−1)
2

+1

)
< τ(Gn−1)×

(4(n−1)
4(n−1)

2

)
< τ(Gn−2)×

(4(n−2)
4(n−2)

2

)
×
(4(n−1)

4(n−1)
2

)
...

< τ(G1)×
(4(2−1)

4(2−1)
2

)
×
(4(3−1)

4(3−1)
2

)
× · · · ×

(4(n−2)
4(n−2)

2

)
×
(4(n−1)

4(n−1)
2

)
< 1× 6× 70× · · · ×

(4(n−2)
4(n−2)

2

)
×
(4(n−1)

4(n−1)
2

)
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=
∏n

i=1

(4(n−i)
4(n−i)

2

)
.

and this completes the proof.

3 Conclusions

In this paper, we study the problem of computing the number of spanning trees in a square lattice and
present two upper bounds for this problem. Further work can be about improving these upper bounds and
generalizing them for special cases of the grid graphs.
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