New approaches of Wolstenholme's Theorem

Daniel Yaqubi ${ }^{1}$
University of Torbat e Jam, Torbat-e Jam, Iran

Abstract

The Wolstenholme's theorem asserts that if $p \geq 3$ be a prime then the binomial coefficient $\binom{2 p-1}{p-1}$ satisfies the congruence $$
\binom{2 p-1}{p-1} \equiv 1 \quad\left(\bmod p^{3}\right) .
$$

In this talk, we give a family of congruences for the binomial coefficients $\binom{n p-1}{p}$ modulo p^{3} and modulo p^{4}. In fact, the first one is a conjecture that was stated by Manjil P. Saikia.

Keywords: Wolstenholme theorem; Wolstenholme-type theorem; generalized Wolstenholme's theorem, Glaisher Congruence AMS Mathematical Subject Classification [2010]: 11B65; 05A10.

1 Introduction

Wolstenholme's theorem is a result in number theory that was first conjectured by the British mathematician Joseph Wolstenholme [4] in the mid- $19^{\text {th }}$ century and later proven by Thomas Penyngton Kirkman [3] in 1862. The theorem is concerned with certain properties of binomial coefficients and their divisibility by prime numbers, which is stated as follows: For any prime number $p>3$, the congruence $\binom{2 p-1}{p-1} \equiv 1\left(\bmod p^{3}\right)$ holds.

It is well known that the Wolstenholm's theorem is equivalent to for any prime $p \geq 5$ the numerator of the fraction

$$
1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{p-1}
$$

is divisible by p^{2}.
In 1900, Glaisher proved generalized Wolstenholme's congruence.
Theorem 1.1 (Glaisher Congruence). if $p \geq 5$ be a prime, we have

$$
\binom{n p-1}{p-1} \equiv 1 \quad\left(\bmod p^{3}\right) .
$$

Glaisher and Wolstenholm's congruences, extend for higher power of prime p by some authors. The first, we need to define some notations.

[^0]Definition 1.2. For positive integers $n \leq m$, we denote

$$
R_{n}(m)=\sum_{k=1}^{p-1} \frac{1}{k^{n}} \quad \text { and } \quad H_{n}(m)=\sum_{1 \leq i_{1}<i_{2} \cdots<i_{n} \leq m-1} \frac{1}{i_{1} i_{2} \cdots i_{n}} .
$$

In 1900, J. W. L. Glaisher proved the following result.
Theorem 1.3 (Glaisher, [2]). For any prime $p \geq 5$ we have

$$
\binom{2 p-1}{p-1} \equiv 1-2 p H_{1}(p-1) \equiv 1-\frac{2}{3} p^{3} B_{p-3} \quad\left(\bmod p^{4}\right)
$$

Almost 5 years later, R. J. McIntosh extend Glaisher congruence to modulo p^{5} and showed that for any prime $p \geq 7$, we have

$$
\binom{2 p-1}{p-1} \equiv 1-p^{2} R_{2}(p-1) \equiv 1+2 p H_{1}(p-1) \quad\left(\bmod p^{5}\right)
$$

Recently, Manjil P. Saikia. posed the following conjecture, which is the special case of Glaisher congruence just by replacing $p-1$ with p [1].

Conjecture 1. For a prime number $p \geq 3$ and positive integer n, the congruence

$$
\binom{n p-1}{p} \equiv n-1 \quad\left(\bmod p^{3}\right)
$$

holds.

In this note, we proved this conjecture and also generalized Saikia's conjecture for higher power of prime p and give a family of congruences for this binomial coefficient as in terms of multiple harmonic sums and generalization of the harmonic numbers.

References

[1] M. P. Saikia, Conjectures on congruences of binomial coefficients modulo higher powers of a prime number, J. Assam Acad. Math., Vol. 13 (2023), 1-4.
[2] J. W. L. Glaisher, On the residues of the sums of products of the first $p-1$ numbers, and their powers, to modulus p^{2} or p^{3}, Q. J. Math. 31 (1900), 321-353.
[3] T. P. Kirkman, On a problem in the number of combinations. Cambridge and Dublin Mathematical Journal, 17, 150-155.
[4] J. Wolstenholme, On certain properties of prime numbers. The Quarterly Journal of Pure and Applied Mathematics, 5, 35-39.
[5] R.J. McIntosh and E.L. Roettger, A search for Fibonacci-Wieferich and Wolstenholme primes, Math. Comp. 76 (2007), 2087-2094.
[6] D. Yaqubi and M. Mirzavaziri, Some divisibility properties of binomial coefficients. Journal of Number Theory, 183 (6), 232-245.
e-mail: yaqubi@tjamcaas.ac.ir

[^0]: ${ }^{1}$ speaker

