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Abstract
A cycle basis of a simple graph G is a basis for the null-space of the incidence matrix of G, each of

whose elements corresponds to a cycle of G. A minimum cycle basis is a cycle basis with minimum total
length. One of the important types of cycle basis is fundamental cycle basis. In this paper we compute
the minimum fundamental cycle basis for special families of graph products.
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1 Introduction

A cycle of a graph G = (V,E) is a connected regular subgraph of degree 2. Any cycle in G can be represented
by an incidence vector γC ∈ {0, 1}|E| (γC ∈ {0,±1}|E| in directed case). The cycle space of G is the vector
space generated by {γC | C is a cycle in G} over Z2 (over Q in directed case). A cycle basis for G consists
of some cycles which form a basis for cycle space of G. The length of a cycle basis is the total length of
the cycles included in the basis. A minimum cycle basis (or MCB for short) of a graph is a cycle basis
with minimum length. We associate a matrix M(B) to each cycle basis B in which all whose rows are the
members of the basis. In [5] the authors give a good survey on cycle basis of graphs. In [7] five different
classes of cycle bases are defined. One of these classes of cycle basis is strictly fundamental cycle basis (or
fundamental cycle basis for short). A cycle basis B is called fundamental if there exists a matrix M ′ such
that M(B) equals to [I|M ′] (after possibly rearrangement of the rows and column), where I is the identity
matrix. In the following Lemma we find a characterization of the fundamental basis of graphs.

Lemma 1.1. Let G be an undirected graph and B be a cycle basis for G. Then B is fundamental cycle basis
if and only if there exits some spanning tree T of G such that B = {CT (e)|e ∈ E(G) \ E(T )}, where CT (e)

denoted the unique cycle in T ∪ {e}.

Proof. We prove one part, the proof of the other part is similar. Suppose that there exits some spanning
tree T of G such that B = {CT (e)|e ∈ E(G) \E(T )}, where CT (e) denoted the unique cycle in T ∪ {e}. We
give an ordering to the set of vertices and to the set of the basis, with respect to which M(B) is of the forme

1speaker

128



Minimum fundamental cycle basis of graphs 129

[I|M ′]. Let e1, e2, . . . , en−m+1 be the the non-tree edge of V . Then in the ordering we put e1, e2, . . . , en−m+1

first and the edges of T last in V . Moreover let CT (e1), CT (e2), . . . , CT (en−m+1) be the ordering of the
members of B. Then it is easy to see that by this ordering M(B) has the desired standard form.

It has been shown that computing minimum fundamental cycle basis is an NP-hard problem. Hence it
would be interesting to compute the fundamental basis for special families of graphs.

2 Minimum Fundamental Basis

Let Kn,n be a complete bipartite graph of order 2n and M be a complete matching of Kn,n. Suppose Gn

be a graph constructed from Kn,n \M . Then for each n we will find a minimum weakly fundamental basis
for graph Gn. The proof is mostly based on work in [3].

In this section we find a minimum fundamental cycle basis for Gn. Since Gn is a bipartite graph the
length of its cycles are at least 4. In the following theorem we show that an MFCB for Gn should have a
cycle of length 6.

Theorem 2.1. for any integer n ≥ 3, graph Gn has no fundamental cycle basis with all cycles of length 4.

Proof. For the contrary suppose there exists a spanning tree T of Gn and B is a fundamental cycle basis
with respect to T and all cycles in B have length 4.
First we show that there is no pair of vertices α, β such that dT (α, β) ≥ 5. without loss of generality we
suppose that α is a vertex of degree one in T . Let P be the path in T connecting α and β and f be a
vertex in P with dT (α, f) = 5. Let Q = α, b, c, d, e, f be the path in T connecting α and f . without loss
of generality assume that α ∈ A, then {c, e} ⊆ A and {b, d, f} ⊆ B. We have {α, f} ̸∈ E(Gn), otherwise
there would be a cycle of length 6 in B, which is a contradiction. Since the only vertex of B which is not
adjacent to α is n+α, we have f = n+α. We claim that NT (e) = {f, d}, because if e has another neighbor
called s then s ∈ B on the other hand with the same reason as before {α, s} ̸∈ E(Gn) and hence s = n+ α,
but we had f = n + α, which is a contradiction. With a same procedure one can prove NT (b) = {α, c}. It
is easy to check that if c or d has a neighbor which is not Q, then in either cases it should be a vertex of
degree one of T . Now, we consider the vertex n+ c ∈ B the only possibility for it is that it is out of Q with
dT (n+ c, f) ≥ 2. Hence, dT (n+ c, c) ≥ 5 and dT (n+ c, a) ≥ 7. Now adding the edge {a, n+ c}, which had
been already an edge of Gn, to T gives a cycle with length at least 8 in B, which is a contradiction.

Now, we prove that there are no pair a and e of vertices such that dT (a, e) = 4. Without loss of generality
we suppose that a is a vertex of degree one in T . Let P = a, b, c, d, e be the unique path in T connecting
a and e. We claim that for every vertex x of Gn, dT (c, x) ≤ 2. For contrary, suppose there exist a vertex
z ∈ V (Gn) with dT (c, z) = 3. Let Q be the unique path in T connecting c and z, there are three cases:
Case 1. E(P ) ∩ E(Q) = ∅. Then dT (a, z) = dT (a, z) = 5, which is a contradiction.
Case 2. |E(P )∩E(Q)| = 1. Without loss of generality assume that |E(P )∩E(Q)| = {b, c}. One can easily
check that dT (z, e) = 5, which is a contradiction.
Case 3. |E(P )∩E(Q)| = 2. Without loss of generality assume that |E(P )∩E(Q)| = {{b, c}{a, b}}. Again,
it is easy to see that dT (z, e) = 5, which is a contradiction.

Theorem 2.2. For any integer n ≥ 3, a minimum fundamental cycle basis for graph Gn consists of one
cycle of length 6 and all other cycles of length 4.
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Proof. It is a straight conclusion of Theorem 2.1.
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