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Abstract
In this paper, we incorporate immune systems containing Cytotoxic T lymphocyte and humoral im-

munity into a general human immunodeficiency viruses infection model, which also considers logistic
growth for target cells and both modes of spread; cell-to-cell and cell-free represent by linear functions.
We derive five threshold parameters which establish to study the existence of equilibria. By considering
the characteristic equations, the local stability of disease-free and immune-free equilibria is investigated.
Lyapunov functions and LaSalle’s invariance are constructed to prove the global stability of all steady
states. Global dynamics of the human immunodeficiency viruses model can be accurately expressed by
threshold parameters. Furthermore, numerical simulations are confirmed the corresponding theoretical
results.

Keywords: HIV-1 infection, Stability, Dynamical systems
AMS Mathematical Subject Classification [2010]: 34D23, 37B25

1 Introduction

Following the recent epidemics, the importance of studying such diseases is becoming increasingly clear.
Many mathematical models were developed to study and analyze infectious diseases such as human im-
munodeficiency viruses (HIV), Human Papillomavirus (HPV), Hepatitis B Virus (HBV), Hepatitis C Virus
(HCV), and new efforts have been made to model COVID-19. Modeling and analyzing the mathematical
model of an infectious disease such as HIV in detail can also be applied to understand the behavior of other
viruses, tumors and epidemic models ([10, 12, 31]). Also, by using fractional derivatives, the modeling of
illnesses will be entered at a new level of researchs ([25]). After COVID-19, various aspects of the study
of infectious diseases, including vaccine production, statistics, modeling and control have been considered
([1]). The HIV has been threatening human health for many years. Extensive studies have been conducted
over the decades to understand the nature of this virus. The main targets of this virus in the human body
are macrophages, dendritic cells and helper T cells ([3]). Two important factors in the fight against HIV
infection are B and Cytotoxic T Lymphocyte (CTL) cells. The role of CTL cells is to attack infected cells
and B cells to produce antibodies to attack HIV components ([6]). Considering both immunities in the
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mathematical model gives us a deeper insight into the functioning of the disease, which ultimately allows us
to design treatment strategies and achieve the goal of producing an effective vaccine ([18]). Many authors
have investigated the effect of CTL and humoral immunity alone or both on the dynamical behavior of the
mathematical model of HIV([2, 7, 8, 9, 13, 14, 18, 19, 20, 28, 29, 24]).

Li and Wang in [15] proposed the following model where the target cells have a logistic term and
incorporating two modes of transmission of HIV-1.

dT

dt
= λ− dT + rT

(
1− T

K

)
− β1TV − β2TT

∗,

dT ∗

dt
= β1TV + β2TT

∗ − δT ∗,

dV

dt
= NδT ∗ − cV,

(1)

where T , T ∗ and V are concentrates of CD4+, infected cells and viruses, respectively. λ, d and K are the
recruitment rate, the natural death rate and the maximum level of CD4+ T cells, respectively. r, β1 and
β2 are positive constants and the terms β1TV and β2TT

∗ represent the infection rates related to two modes
of HIV-1 transmission. Viruses are assumed to be produced by each infected cell at rate N and disappear
at rate c. The death rate of infected cells is shown by constant δ. They investigated the local and global
asymptotic stability of the equilibria and the occurrence of Hopf bifurcation by identifying two bifurcation
parameters.

In this paper, we incorporate cellular immunity and humoral immunity in the model of (1) and introduce
the following model

Ṫ = λ− dT + rT

(
1− T

TM

)
− β1TV − β2TI,

İ = β1TV + β2TI − aI − pIZ,

V̇ = kI − uV − qV W,

Ẇ = gV W − hW,

Ż = cIZ − bZ,

(2)

where T , I, V , W , and Z represent the numbers of the uninfected host cells, the infected cells, the free virus,
antibody response and the CTL response, respectively. λ, β1, β2, d and r have the same meaning as those
in (1). B cells and CTL cells are activated at rate gV W and cIZ and died at rate hW and bZ, respectively.
Virus are produced from infected cells at rate kI, died at rate uV and are disappearing by antibodies at
rate qV W . Terms aI and pIZ describe the death rate of infected cells and destruction rate of infected cells
by cellular immunity, respectively.

The main aim of this work is to generalize the model (1) that takes into account the role of both modes
of immunity. To this end, in the next section, we present the basic details such as the positivity and
boundedness of solutions and introduce the five threshold parameters related to our model and identify the
existence conditions of the equilibria. The global stability of the equilibria is described in Section 3 and
finally the mathematical and biological conclusions are given in Section 4.
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2 Equilibria, reproduction number

From a biological point of view and due to the nature of the disease model, only non-negative solutions are
acceptable for system (2) and hence, the initial conditions of system (2) are assumed as follows:

T (0) > 0, I(0) > 0, V (0) > 0, W (0) > 0, and Z(0) > 0. (3)

The right hand side functions of (2) are continuous, smooth and Lipschitz on [0, N ], N > 0. Therefore,
from Picard-Lindelöf theorem there is a unique solution to system (2) with the initial conditions (3).

Proposition 2.1. All solutions of (2) with non-negative initial conditions exist for all t > 0 and remain
bounded and non-negative.

In the following, we consider the equilibria of (2) and introduce the basic reproduction number R0. In
general (2) has five equilibrium points, E0, E1, E2, E3 and E4. In the absence of infection and immunity,
there always exists an infection-free equilibrium E0 = (T0, 0, 0, 0, 0) where

T0 =
TM

2r

[
(r − d) +

√
(r − d)2 +

4rλ

TM

]
.

The basic reproduction number of system (2) is

R0 = R01 +R02,

where R01 =
β1kT0

au
and R02 =

β2T0

a
, which are corresponded to the cell-free virus spread and cell-to-cell

transfer, respectively. By attention to quantity of R0, it can be concluded that by adding the cell-to-cell
term in system, R02 be added to R0 and this value show the effects of cell-to-cell transmission on basic
reproduction number.

Regardless of immunity, there exists an immune-free equilibrium E1 = (T1, I1, V1, 0, 0) provided that
R0 > 1, where

T1 =
au

β1k + β2u
=

T0

R0
,

I1 =
u

k
V1 =

(λ+ r)(R0 − 1)

R0a
,

V1 =
(β1k + β2u)k(λ+ r)Tm − k(dTM + r)au

auTM (β1k + β2u)
=

k(λ+ r)(R0 − 1)

R0au
.

Actually, R0 > 1 means (β1k + β2u)k(λ+ r)Tm > k(dTM + r)au which can make V1 > 0 and it yields
the existence of the immune-free equilibrium.

Assuming the potential development of immune responses, inequalities cI1 > b and gV1 > h must be
established. Given these conditions, the CTL immune reproduction number RCTL and the humoral immune
reproductive number RHum can be defined as

RCTL =
cI1
b

=
c(λ+ r)(R0 − 1)

abR0
,

RHum =
gV1

h
=

gk(λ+ r)(R0 − 1)

hauR0
.

As a result, by developing the CTL response while RCTL > 1 and d ≥ r, system (2) has the unique
humoral immune-free equilibrium E2 = (T2, I2, V2, 0, Z2) where
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T2 ∈ [0, T̄ ], I2 =
b

c
, V2 =

kb

cu
, Z2 =

1

pI2

[
λ− dT2 + rT2

(
1− T2

TM

)
− aI2

]
.

Now, assuming that the only immune system that is stimulated is the humoral immune response, con-
ditions gV2 > h and cI3 > b must be established. The humoral immune competitive reproduction number
RHumC and the CTL immune competitive reproduction number RCTLC can be defined as

RHumC =
gV2

h
=

gkb

hcu
,

RCTLC =
cI3
b

=
csh

bkg
.

CTL immune-free equilibrium E3 = (T3, I3, V3,W3, 0) occurs when the only active immunity in the body is
humoral immunity. Therefore, if RHumCRCTLC > 1, RHum > 1, a ≤ β2T̄3 and d ≥ r, then there exists a
unique CTL immune-free equilibrium E3.

The last equilibrium is related to the case that both humoral immune response and CTL immune response
have been stimulated. In this case, W and Z are non-zero. Hence, from the last three equations of (2), it
can be concluded that

I =
b

c
, V =

h

g
, W =

kbg − cuh

cqh
=

u

q
(RHumC − 1).

Hence, if RCTLC > 1, RHumC > 1 and d ≥ r, then h
′
(T ) > 0 and there exists a unique positive

equilibrium E4 = (T4, I4, V4,W4, Z4) with

T4 ∈ [0, T̄ ], I4 =
b

c
, V4 =

h

g
,

W4 =
kbg − cuh

cqh
=

u

q
(RHumC − 1),

Z4 =
1

pI4

[
λ− dT4 + rT4

(
1− T4

TM

)
− aI4

]
.

3 Global properties

In this section, the global stability of all steady states will be established by constructing some suitable
Lyapunov functions and LaSalle’s invariance principle. It is clear that the stability of the equilibria depends
on the sign of R0−1 and conditions on the other reproduction numbers RCTL, RHum, RHumC and RCTLC.
In this section, to prove the global stability of the equilibrium points, function F : (0,∞) → [0,∞) will be
needed which is defined by

F (m) = m− 1− lnm.

Theorem 3.1. The infection-free equilibrium E0 is globally asymptotically stable if R0 ≤ 1.

Proof. Define a Lyapunov function L0 as

L0(T, I, V,W,Z) = T0F

(
T

T0

)
+ I +

β1T0

u
V +

β1qT0

gu
W +

p

c
Z.

Therefore,
dL0

dt
=

(
1− T0

T

)
Ṫ + İ +

β1T0

u
V̇ +

β1qT0

gu
Ẇ +

p

c
Ż. (4)
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Applying the conditions of equilibrium E0, we have

λ = dT0 − rT0 +
rT 2

0

TM
. (5)

Hence,

dL0

dt
|(1.3)=

(
1− T0

T

)(
λ− dT + rT

(
1− T

TM

)
− β1TV − β2TI

)
+ β1TV + β2TI − aI − pIZ +

β1T0

u

(
kI − uV − qV W

)
+

β1qT0

gu

(
gV W − hW

)
+

p

c

(
cIZ − bZ

)
= −

[
d− r + r

(
T + T0

TM

)]
(T − T0)

2

T
− β1qhT0

gu
W − pb

c
Z + aI(R0 − 1).

(6)

Since R0 ≤ 1, by (4)-(6), it can be concluded that dL0

dt
≤ 0 for all T, I, V,W,Z > 0. Hence, the infection-

free equilibrium E0 is stable. On the other hand, dL0

dt
= 0 if and only if T = T0, I = 0, W = 0 and

Z = 0. By attention to equilibrium conditions and using the third equation of (2), it can be concluded that
if I = W = 0, then V = 0. Let Ω0 be the largest invariant set in

Ψ0 = {(T, I, V,W,Z) | L̇0 = 0} = {E0}.

We have that Ω0 = {E0}. The global asymptotic stability of E0 follows from LaSalle’s invariance principle
(Theorem 7.2 in [21]).

By the similar arguments, we can prove the following theorems.

Theorem 3.2. The immune-free equilibrium E1 is globally asymptotically stable if R0 > 1, RHum ≤ 1 and
RCTL ≤ 1.

Proof. Define a Lyapunov function L1 as

L1(T, I, V,W,Z) = T1F

(
T

T1

)
+ I1F

(
I

I1

)
+

β1T1V1

u
F

(
V

V1

)
+

β1qT1

gu
W +

p

c
Z.

Therefore,
dL1

dt
=

(
1− T1

T

)
Ṫ +

(
1− I1

I

)
İ +

β1T1

u

(
1− V1

V

)
V̇ +

β1qT1

gu
Ẇ +

p

c
Ż. (7)

Using the conditions of equilibrium E1, we have

λ = dT1 − r +
rT1

TM
+ β1T1V1 + β2T1I1,

β1T1V1 + β2T1I1 = aI1,

kI1 = uV1.

(8)

Also, we need the equalities

ln(1) = ln

(
TIV1

T1I1V

)
+ ln

(
I1V

IV1

)
+ ln

(
T1

T

)
,

ln(1) = ln

(
T1

T

)
+ ln

(
T

T1

)
.

(9)
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Hence,

dL1

dt
|(1.3)=

(
1− T1

T

)(
λ− dT + rT

(
1− T

TM

)
− β1TV − β2TI

)
+

(
1− I1

I

)(
β1TV + β2TI − aI − pIZ

)
+

β1T1

u

(
1− V1

V

)(
kI − uV − qV W

)
+

β1qT1

gu

(
gV W − hW

)
+

p

c

(
cIZ − bZ

)
= −

[
d− r + r

(
T + T1

TM

)]
(T − T1)

2

T
− (β1T1V1 + β2T1I1)F

(
T1

T

)
− β1T1V1F

(
TV I1
T1V1I

)
− β2T1I1F

(
T

T1

)
− β1T1V1F

(
IV1

I1V

)
+

β1qT1

u

(
V1 −

h

g

)
W + p

(
I1 −

b

c

)
Z.

= −
[
d− r + r

(
T + T1

TM

)]
(T − T1)

2

T
+ β1T1V1

[
3− T1

T
− IV1

I1V
− TV I1

T1V1I

]
+ β2T1I1

[
2− T

T1
− T1

T

]
+

β1qhT1

gu
(RHum − 1)W +

pb

c
(RCTL − 1)Z.

(10)

On the other hand, since the arithmetic mean is greater than or equal to the geometric mean, it is easy to
check that

3− T1

T
− IV1

I1V
− TV I1

T1V1I
≤ 0,

2− T

T1
− T1

T
≤ 0.

(11)

Since RHum ≤ 1, RCTL ≤ 1 and d ≥ r, by (7)-(11), it can be concluded that dL1

dt
≤ 0 for all T, I, V,W,Z >

0. Hence, the immune-free equilibrium E1 is stable. On the other hand, dL1

dt
= 0 if and only if T = T1,

I = I1, V = V1, W = 0 and Z = 0. Let Ω1 be the largest invariant set in

Ψ1 = {(T, I, V,W,Z) | L̇1 = 0} = {E1}.

We have that Ω1 = {E1}. The global asymptotic stability of E1 follows from LaSalle’s invariance principle
(Theorem 7.2 in [21]).

By the similar arguments, we can prove the following theorems.

Theorem 3.3. The humoral immune-free equilibrium E2 exists and is globally asymptotically stable if
RCTL > 1, RHumC ≤ 1 and RCTLC > 1.

Theorem 3.4. The CTL immune-free equilibrium E3 exists and is globally asymptotically stable if RHum >

1, RCTLC ≤ 1 and RHumC >
1

RCTLC
.

Theorem 3.5. The endemic equilibrium E4 exists and is globally asymptotically stable if RCTLC > 1 and
RHumC > 1.
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4 Examples and Numerical Simulations

In this section, to illustrate the theoretical results, applying Python with Runge–Kutta method, some
numerical examples will be presented. Hereafter, we consider a set of parameters

λ = 10, r = 0.018, d = 0.02, TM = 1200, a = 0.8,

p = 0.9, k = 10, u = 3, q = 0.01, h = 2, b = 0.755

and different values of β1, β2, g and c. For the numerical study of the stability of the infection-free equilibrium
E0, we consider the parameter values from Table 2 and β1 = 0.00003, β2 = 0.00002, g = 0.03 and c = 0.04.
The basic reproduction number takes the value R0 = 0.8215 < 1. In this case, the solutions of the system
converge to infection-free equilibrium E0 = (752.5470, 0, 0, 0, 0). The stability of the first equilibrium E0

can be seen in Figure 1.
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Figure 1: Solution trajectories as functions of time, tending to stable equilibrium E0

The immune-free equilibrium E1 is asymptotically stable with the values of Table 2 and for the parameter
values β1 = 0.003, β2 = 0.002, g = 0.03 and c = 0.04. It can be seen that the basic reproduction
number equals to R0 = 11.2882 and the immune-free equilibrium is given by E1 = (T1, I1, V1, 0, 0) =

(66.6667, 12.2523, 40.8333, 0, 0). In this case, the CTL immune reproduction number RCTL and humoral
immune reproductive number RHum are calculated as 0.4868 and 0.8166, respectively which are less than
one. Also according to Theorem 3.2, the equilibrium point is expected to be globally asymptotically stable,
which is shown in Figure 2.

By Theorem 3.3, the humoral immune-free equilibrium E2 = (T2, I2, V2, 0, Z2) is globally asymptotically
stable in the absence of humoral immunity with the values of Table 2 and the parameter values β1 = 0.003,
β2 = 0.002, g = 0.03 and c = 0.15 which is depicted in Figure 3. In this case, the reproduction number
is greater than one and equals to R0 = 11.2882 and all solutions converge to E2 = (T2, I2, V2, 0, Z2) =

(154.5180, 5.0333, 16.7778, 0, 1.1713). Subsequently, it can be concluded that RCTL = 2.4342 > 1, RCTLC =

2.4216 > 1, RHum = 0.8166 < 1 and RHumC = 0.3356 < 1.
In the study of the stability of CTL immune-free equilibrium E3, considering the values of Table 2
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Figure 2: Solution trajectories as functions of time, tending to stable equilibrium E1.

and taking β1 = 0.003, β2 = 0.002, g = 0.14 and c = 0.04, it can be leads E3 = (T3, I3, V3,W3, 0) =

(141.8015, 11.7685, 14.2857, 523.7934, 0) and R0 = 11.2882. According to the relations intended for the
reproduction numbers in this case, it can be concluded that RCTL = 0.9073 < 1, RCTLC = 0.8729 < 1,
RHum = 2.8583 > 1 and RHumC = 1.1744 > 1. Also, we have RHumC > 1

RCTLC
=

1

0.8729
= 1.1456.

Identical to Theorem 3.4, we expect the CTL immune-free equilibrium E3 to be globally stable, as shown
in Figure 4.

Finally, Figure 5 represents the case that both immunities are active in the body. In this case, by using
the values in Table 2 and assuming β1 = 0.003, β2 = 0.002, g = 0.125 and c = 0.15, the positive equilibrium
and the basic reproduction number are E4 = (160.0822, 5.0333, 16, 14.5833, 1.1630) and R0 = 11.2882,
respectively. Alternatively, with the help of related relations, it can be calculated that RCTL = 2.4303 > 1,
RCTLC = 2.3381 > 1, RHum = 2.5521 > 1 and RHumC = 1.0486 > 1. Hence, in this case all the solutions
tend to positive equilibrium E4 = (160.0822, 5.0333, 16, 14.5833, 1.1630). .
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