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 ABSTRACT 

Assume that 𝑆𝑛(r) ⊆ 𝑆𝑛. Also consider that 𝑆𝑛(r) is the set of permutations of  size 𝑛  with 𝑟 fixed 

points. Then: 

 ⎹𝑆𝑛(r)⎹=(
𝑛
r

) 𝐷𝑛−r 

Where, 𝐷𝑛 is the number equal to the number of members of a derangement set of  size 𝑛. Assume 

that  𝑝 is a real number such that 0 ≤ 𝑝 < 1. Also, consider that  1 ≤ 𝑟 < 𝑛. If the probability that a 

permutation with  𝑛 elements has at least 𝑟 fixed members is less than the number 𝑝, then the number 𝑟 is 

independent of the choice of the number 𝑛. In addition,  

 

(
1

0!
+ ⋯ +

1

𝑟 − 1!
) > (1 − p)e 
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1 INTRODUCTION 

Derangements are arrangements of some number of objects into positions such that no object goes 

to its specified position. In the language of permutations, a derangement is a permutation in which none of 

the objects appear in their "natural" (i.e., ordered) place. 

If we choose a random permutation, the probability that it is a derangement is close to 1/e. Another 

version of the problem arises when we ask for the number of ways n letters, each addressed to a different 

person, can be placed in n pre-addressed envelopes so that no letter appears in the correctly addressed 

envelope. 

The derangement problem was formulated by P. R. de Montmort in 1708, and solved by him in 1713 

(de Montmort 1713-1714). Nicholas Bernoulli also solved the problem using the inclusion-exclusion 

principle. The number of derangements of an 𝑛-element set is called the 𝑛 -th derangement number 

or rencontres number, or the sub-factorial of 𝑛  and is sometimes denoted   𝐷𝑛. Counting the derangements 

of a set amounts to what is known as the hat-check problem, in which one considers the number of ways in 

which 𝑛 hats can be returned to n people such that no hat makes it back to its owner. This number satisfies 

the recurrences 

 

𝐷𝑛 = (𝑛 − 1)(𝐷𝑛−1 + 𝐷𝑛−2). 
 

Also, it is well-known that  

https://brilliant.org/wiki/permutations/
https://mathworld.wolfram.com/Inclusion-ExclusionPrinciple.html
https://mathworld.wolfram.com/Inclusion-ExclusionPrinciple.html
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lim
𝑛→∞

𝐷𝑛

𝑛!
= 𝑒−1 = 0.3678 … 

 

THEOREM A. Assume that 𝐴 is a subset of {1,2,3, … , 𝑛}   and consider 𝜎𝟄𝑺𝒏is a  derangement on 

𝐴. Also assume that ⎹𝐴⎹ = 𝑚 ≤ 𝑛 and 𝐷𝑚 is the set of all derangement on 𝐴, then: 

 

∑(−1)𝑘 (
𝑚
𝑘

) (
𝑛 − 𝑘
𝑚 − 𝑘

) (𝑚 − 𝑘)!

𝑚

𝑘=0

 

Theorem B. For all 𝑛 > 2 and 𝑟 > 0, we have 

 

 

𝐷𝑟(𝑛) = 𝑟𝐷𝑟−1(𝑛 − 1)+(𝑛 − 1)𝐷𝑟(𝑛 − 2)+(𝑛 + 𝑟 − 1)𝐷𝑟(𝑛 − 1) 

 

Also, they find exponential generating function of 𝐷𝑟(𝑛) as following: 

 

Theorem C. For any 𝑟𝜖ℕ  for the exponential generating function of the sequence of 𝑟-derangements 

numbers we have that: 

 

In this manner, we obtained the following information in previous works. 

𝐹𝑟(𝑥) = ∑
𝐷𝑟(𝑛)

𝑛!

∞

𝑛=0

𝑥𝑛 =
𝑥𝑟𝑒−𝑥

(1 − 𝑥)𝑟+1
 

The interesting this is that the number 𝑒 itself also has applications in probability theory, in a way 

that is not obviously related to exponential growth. Suppose that a gambler plays a slot machine that pays 

out with a probability of one in 𝑛 and plays it 𝑛 times. Gordon and McMahon noted that the number of 

derangements in the hyperoctahedral group gives the rising 2-binomial transform of the derangement 

numbers for 𝑆𝑛. More generally, they shows that the cyclic derangement numbers give a mixed version of 

the rising 𝑟-binomial transform and falling (𝑟 −  1) binomial transform of 𝐷𝑛. This new hybrid 𝑘-binomial 

transform may share many of the nice properties of Spivey and Steil’s transforms, including Hankel 

invariance and/or a simple description of the change in the exponential generating function. Further, it could 

be interesting to evaluate the expression for negative or even non-integer values of 𝑘. For instance, taking 

𝑘 =  1/2 gives the binomial mean transform which is of some interest. 

 

 

We define a new special case of  derangement,  and also we obtain some relation on this subset of 

derangements. This special case of derangement is a subset of block derangement.  

 

Assume that σϵSn is a permutation on n elements, for example {1,2,3, … , n}. Consider that 𝑘 is an 

integer such that 0 ≤ 𝑘 < 𝑛. We define 

 

 

𝑋𝑘 = {𝜎ϵ𝑆𝑛⎹ 𝜎(𝑖 + 1) + 𝑘 ≠ 𝜎(𝑖) 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛 − 1}. 
 

Also, assume that sk = ⎹Xk⎹ , the cardinal number of Xk. Our main goal in this paper is to find a way 

to calculate the value of sk. The following theorem will give an inductive method for calculating the number 

sk. 

  

 

https://en.wikipedia.org/wiki/Probability_theory


 

82 

Theorem D.  Assume that 𝜎ϵ𝑆𝑛 is a permutation on 𝑛 elements, for example {1,2,3, … , 𝑛}. Consider 

that 𝑘 is an integer such that 1 ≤ 𝑘 < 𝑛. We define 

 

 

𝑋𝑘 = {𝜎ϵ𝑆𝑛⎹ 𝜎(𝑖 + 1) + 𝑘 ≠ 𝜎(𝑖) 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛 − 1}. 
 

Also, assume that 𝑠𝑘 = ⎹𝑋𝑘⎹ , the cardinal number of 𝑋𝑘 . 
 

Then,  

 

𝑠𝑘 = (
𝑘
1

) 𝑠𝑘−1 + ⋯ + (
𝑘

𝑘 − 1
) 𝑠1 + (

𝑘
𝑘

) 𝑠0. 

 

In this article, we try to deal with this problem with a probabilistic attitude. In fact, our goal is to be 

able to calculate a certain percentage of permutations that keep members constant for certain values. We 

will see that the solution of this problem is directly related to the derangement problem. 

 

For more result, see [1], [2], [3], [4] and [5]. 
 

  

 

2 MAIN RESULT 

Lemma 2.1. Assume that 𝑆𝑛(r) ⊆ 𝑆𝑛. Also consider that 𝑆𝑛(r) is the set of permutations of  size 𝑛  

with 𝑟 fixed points. Then: 

 ⎹𝑆𝑛(r)⎹=(
𝑛
r

) 𝐷𝑛−r 

Where, 𝐷𝑛 is the number equal to the number of members of a derangement set of  size 𝑛. 

Proof.  

It is enough to select 𝑟 objects among 𝑛 objects. There should be no constant member in the 

remaining set. Therefore, we will have a derangement with 𝑛 − 𝑟 elements. Thus, we obtain that  

⎹𝑆𝑛(r)⎹=(
𝑛
r

) 𝐷𝑛−r 

As we desired. 

 

Main Theorem. Assume that  𝑝 is a real number such that 0 ≤ 𝑝 < 1. Also, consider that  1 ≤ 𝑟 <
𝑛. If the probability that a permutation with  𝑛 elements has at least 𝑟 fixed members is less than the 

number 𝑝, what relation should be established between 𝑟 and 𝑛. 

Solution.  

The number of the  permutations with  𝑛 elements such that they have at least 𝑟 fixed members is 

equal to: 

⎹𝑆𝑛(r)⎹ + ⋯ + ⎹𝑆𝑛(n)⎹ 

Thus, we must have  

⎹𝑆𝑛(r)⎹ + ⋯ + ⎹𝑆𝑛(n)⎹ ≤ (n!)p 

Therefore, 

(
𝑛
r

) 𝐷𝑛−r + ⋯ + 𝐷0 ≤ (n!)p 

Consequently, we obtain that  

(
𝑛
0

) 𝐷𝑛 + ⋯ + (
𝑛

r − 1
) 𝐷𝑛−(𝑟−1) > (n!)(1 − p) 

Now, Consider 𝑛 sufficiently large. We now that: 
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lim
𝑛→∞

𝐷𝑛

𝑛!
= 𝑒−1 

So, 

lim
𝑛→∞

𝐷𝑛−𝑟

𝑛 − 𝑟!
= 𝑒−1 

Thus, we have: 
𝐷𝑛−𝑟

𝑛 − 𝑟!
≈ 𝑒−1 

Hence, 

⎹𝑆𝑛(r)⎹ = (
𝑛
r

) 𝐷𝑛−r ≈
n!

𝑟!
𝑒−1 

On the other hand,  

(
𝑛
0

) 𝐷𝑛 + ⋯ + (
𝑛

r − 1
) 𝐷𝑛−(𝑟−1) > (n!)(1 − p) 

Therefore,  
n!

0!
𝑒−1 + ⋯ +

n!

𝑟 − 1!
𝑒−1 > (n!)(1 − p) 

We obtain that  

(
1

0!
+ ⋯ +

1

𝑟 − 1!
)𝑒−1 > (1 − p) 

But, we know that 

lim
𝑟→∞

(
1

0!
+ ⋯ +

1

𝑟 − 1!
)𝑒−1 = 1 

Then, these calculations will lead to the problem that we want to calculate the 𝑛 umber from the 

above relation. Therefore, the number 𝑟 is independent of the choice of the number 𝑛. 

 

(
1

0!
+ ⋯ +

1

𝑟 − 1!
) > (1 − p)e 

In special case, when 𝑝 = 0.01, we obtain that 𝑟 = 5, independent of the choice of the number 𝑛. 
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