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Abstract
Let G = (V,E) be a simple graph Any cycle in a simple graph with vertex set V and edge set E.

Then any cycle C in G can be considered as an incidence vector of size e = |E|. The set of all linear
combination of these vectors is called the cycle space of G. A basis for cycle space is called cycle basis of
G. A cycle basis B is called fundamental if there exists a spanning tree T of G such that any member
C of B is a cycle which has exactly one edge from E \ T . In this paper for special family of graphs we
characterize all trees which build a minimum fundamental cycle basis.
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1 Introduction

Cycle in graph is an important structure of graph which appear in many areas of mathematics, science
and engineering. For instance cycles paly important rule in periodic scheduling, graph drawing, analysis
of chemical and biological pathways and , analysis of electrical networks. Cycle space of graph is a linear
space which contains all cycles of graphs and also all linear combination of cycles, which is considered over
different fields. A cycle basis is a basis of cycle space. In fact a cycle basis is a compact representation of
the set of all cycles in graph. There are different types of cycle basis. More precisely strictly fundamental,
weakly fundamental, totally unimodular, integral, directed and undirected basis are some kinds of cycle
basis of graphs. In this paper we we consider some kinds of cycle basis for special family of graphs.

A cycle of a graph G = (V,E) is a connected regular subgraph of degree 2. Any cycle in G can be
represented by an incidence vector γC ∈ {0, 1}|E| (γC ∈ {0,±1}|E| in directed case). The cycle space of G
is the vector space generated by {γC | C is a cycle in G} over Z2 (over Q in directed case). A cycle basis
for G consists of some cycles which form a basis for cycle space of G. The length of a cycle basis is the
total length of the cycles included in the basis. A minimum cycle basis (or MCB for short) of a graph is a
cycle basis with minimum length. In [5] the authors give a good survey on cycle basis of graphs. In [7] five
different classes of cycle bases are defined.
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Definition 1.1. Let B = {C1, C2, . . . , Cν} be a directed cycle basis for a graph G, then B is called fun-
damental if there exits some spanning tree T of G such that B = {CT (e)|e ∈ E(G) \ E(T )}, where CT (e)

denoted the unique cycle in T ∪ {e}.

It is easy to see that every fundamental basis is weakly fundamental and every weakly fundamental is
integral basis. But finding minimum basis in each class is an interesting problem. The problem of finding
minimum weakly fundamental basis is an APX-hard problem. Hence, solving this problem for special family
of graphs is interesting. In this paper we find a minimum cycle basis for some special graph products.

2 Minimum Fundamental Basis

Let Kn,n be a complete bipartite graph of order 2n and M be a complete matching of Kn,n. Suppose Gn

be a graph constructed from Kn,n \M . Then for each n we will find a minimum weakly fundamental basis
for graph Gn. The proof is mostly based on work in [3].

In this section we characterize all trees which give an MFCB for Gn. For this aim we need the following
theorem of [3], in which the authors compute the length of an MFCB of Gn.

Theorem 2.1. [3] For any integer n ≥ 3, a minimum fundamental cycle basis for graph Gn consists of one
cycle of length 6 and all other cycles of length 4.

Let T be such a tree and B be the corresponding MFCB. Let f be a function on {1, 2, . . . , 2n} defined
as:

f(x) =

{
x+ n if x ∈ {1, 2, . . . , n},
x− n if x ∈ {n+ 11, n+ 2, . . . , 2n}.

In the following lemmas we prove that the diameter of T should be bounded.

Lemma 2.2. Tree T does not contain any path of length 7, as a subtree.

Proof. For the contrary suppose that T contains path P of length 7. Without loss of generality we can
suppose that P = a1, b1, a2, b2, a3, b3, a4, b4, where ai ∈ A and bi ∈ B, for any i ∈ {1, 2, 3, 4}. By Theorem
2.1, B does not have a cycle of length 8, so b4a1 ̸∈ E(Gn) and since f(a1) is the only vertex in A which
does not connect to a1 in Gn we have b4 = f(a1). Hence, b3 ̸= f(a1), which means that a1b3 ∈ E(Gn)

and C1 = (a1, b1, a2, b2, a3, b3) is the unique longest cycle of Gn and all its other cycles have length 4. Since
a2 ̸= a1 = f(b4), we have a2b4 is an edge of Gn, adding which to T gives a cycle of length 6 in B other than
C1. It is a contradiction.

Lemma 2.3. Tree T does not contain any path of length 6.

Proof. For the contrary suppose that T contains a path of length 7 called P . Without loss of generality
we can suppose that P = a1, b1, a2, b2, a3, b3, a4, where, ai ∈ A and bj ∈ B, for any i ∈ {1, 2, 3, 4} and
i ∈ {1, 2, 3}. Using Theorem 2.1, we conclude that graph Gn has atmost one edge form the set {a1b3, a4b1}
so a4 = f(b1) or a1 = f(b3). Without loss of generality suppose that a4 = f(b1). Suppose that B1, B2, B3 ∈
B\{b1, b2, b3, f(a1)}. Now, before completing the proof of this lemma we need to prove following proposition:

Proposition 2.4. With the same notation as in the proof of Lemma 2.3 the followings hold:
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(i) Non of the vertices B1, B2 and B3 can be connected to b1 or b3 or b2 in T , by an edge disjoint path from
P .

(ii) At most one of the vertices B1, B2 or B3 can be connected to a2 in T , by an edge disjoint path from P .

(iii) At most one of the vertices B1, B2 or B3 can be connected to a3 in T , by an edge disjoint path from P .

Proof.

(i) If one of the B1, B2 and B3 connect to b1 or b3 by such a path, called Q, then the length of Q is at least
2 and hence T contains a path of length at least 7 which is contrary with Lemma 2.2. Now, suppose that at
least on of the B1, B2 or B3 connected to b2 in T , with edge disjoint path Q from P . Without loss of generality
suppose that B1 connect to b2 by q. Since B1 ̸= f(a1) and B1 ̸= f(a4), we have {B1a1, B1a4} ⊂ E(Gn).
Now, adding B1a1 and B1a4 respectively to T gives two different cycles of length 6 in B, which contradicts
with Theorem 2.1.

(ii) For the contrary suppose that two of the Bi’s, called Bs and Bt, connect to a2, by such paths, Now adding
the edges a4B2 and a4B3 from Gn to T , gives two cycles of length at least 6 in B, which is a contradiction
with Theorem 2.1.

(iii) The proof is exactly the same as the proof of (ii), when replacing a2 by a3.

Now, we complete the proof of Lemma 2.3. Using Proposition 2.4 (ii) and (iii), without loss of generality
we can suppose that B1 does not connect to neither a2 nor a3 by an edge disjoint path Q from P , in T . On
the other hand by Proposition 2.4 (i), B1 can not be connected to non of the b1, b2 and b3. So, B1 should
be connected to a1 or a4 by an edge disjoint path Q from P , which give a path of length at least 7 in T ,
which contradicts with Lemma 2.2. Hence, T does not have a path of length 6 as a subtree.

Theorem 2.5. Let T be a tree which gives an MFCB for Gn. Then T is isomorphic to one of the trees
T1, T2 or T3 shown in Figure 1.

Figure 1: Trees which give MFCB for Gn

Proof. By Theorem 2.1 B has a unique cycle of length 6. So T contains a path P of length 6 with end points
a1 and b3 and a1b3 ∈ E(Gn). Suppose that p = a1, b1, a2, b2, a3, b3. Fist we note that, by Lemma 2.3, there
is not any edge disjoint path from P of length more than 1 having b1 or a3 as an end point. Now, suppose
that b1 has a neighbor outside of P , then it should be f(b1) (otherwise B has a second cycle of length 6).
Similarly, if a3 has a neighbor outside of P , then it should be f(a3). Using Lemma 2.3, there is not any edge
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disjoint path from P of length more than 2 having b2 or a2 as an end point. And if, there is an edge disjoint
path Q1 = a2, b, a from P of length 2 then a should be f(b3) and with a similar discussion if, there is an
edge disjoint path Q2 = b2, a

′, b′ from P of length 2 then b should be f(a1). It is easy to check that non two
case of these four cases can occur at the same time, otherwise a second cycle of length 6 is in B, which is a
contradiction. If non of these four cases occur then T = T1, if case 2, or case 3, occur, than T = T2, finally,
if case 3 or case 4 occur, then T = T3. Moreover it is easy to check that trees T1, T2 and T3 gives an MFCB
for Gn.
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