$8^{\text {dh }}$ International Conference on

Characterizing spanning trees which give a minimum fundamental cycle basis for a special family of graphs

Narges Ghareghani ${ }^{1}$
Department of Industrial design, College of Fine Arts, University of Tehran, Tehran, Iran

Abstract

Let $G=(V, E)$ be a simple graph Any cycle in a simple graph with vertex set V and edge set E. Then any cycle C in G can be considered as an incidence vector of size $e=|E|$. The set of all linear combination of these vectors is called the cycle space of G. A basis for cycle space is called cycle basis of G. A cycle basis B is called fundamental if there exists a spanning tree T of G such that any member C of B is a cycle which has exactly one edge from $E \backslash T$. In this paper for special family of graphs we characterize all trees which build a minimum fundamental cycle basis.

Keywords: Cycles in graphs, Cycle basis, Minimum cycle basis.
AMS Mathematical Subject Classification [2010]: 05C50, 05C90

1 Introduction

Cycle in graph is an important structure of graph which appear in many areas of mathematics, science and engineering. For instance cycles paly important rule in periodic scheduling, graph drawing, analysis of chemical and biological pathways and, analysis of electrical networks. Cycle space of graph is a linear space which contains all cycles of graphs and also all linear combination of cycles, which is considered over different fields. A cycle basis is a basis of cycle space. In fact a cycle basis is a compact representation of the set of all cycles in graph. There are different types of cycle basis. More precisely strictly fundamental, weakly fundamental, totally unimodular, integral, directed and undirected basis are some kinds of cycle basis of graphs. In this paper we we consider some kinds of cycle basis for special family of graphs.

A cycle of a graph $G=(V, E)$ is a connected regular subgraph of degree 2 . Any cycle in G can be represented by an incidence vector $\gamma_{C} \in\{0,1\}^{|E|}\left(\gamma_{C} \in\{0, \pm 1\}^{|E|}\right.$ in directed case $)$. The cycle space of G is the vector space generated by $\left\{\gamma_{C} \mid C\right.$ is a cycle in $\left.G\right\}$ over \mathbb{Z}_{2} (over \mathbb{Q} in directed case). A cycle basis for G consists of some cycles which form a basis for cycle space of G. The length of a cycle basis is the total length of the cycles included in the basis. A minimum cycle basis (or MCB for short) of a graph is a cycle basis with minimum length. In [5] the authors give a good survey on cycle basis of graphs. In [7] five different classes of cycle bases are defined.

[^0]Definition 1.1. Let $B=\left\{C_{1}, C_{2}, \ldots, C_{\nu}\right\}$ be a directed cycle basis for a graph G, then B is called fundamental if there exits some spanning tree T of G such that $\mathcal{B}=\left\{C_{T}(e) \mid e \in E(G) \backslash E(T)\right\}$, where $C_{T}(e)$ denoted the unique cycle in $T \cup\{e\}$.

It is easy to see that every fundamental basis is weakly fundamental and every weakly fundamental is integral basis. But finding minimum basis in each class is an interesting problem. The problem of finding minimum weakly fundamental basis is an APX-hard problem. Hence, solving this problem for special family of graphs is interesting. In this paper we find a minimum cycle basis for some special graph products.

2 Minimum Fundamental Basis

Let $K_{n, n}$ be a complete bipartite graph of order $2 n$ and M be a complete matching of $K_{n, n}$. Suppose G_{n} be a graph constructed from $K_{n, n} \backslash M$. Then for each n we will find a minimum weakly fundamental basis for graph G_{n}. The proof is mostly based on work in [3].

In this section we characterize all trees which give an MFCB for G_{n}. For this aim we need the following theorem of [3], in which the authors compute the length of an MFCB of G_{n}.

Theorem 2.1. [3] For any integer $n \geq 3$, a minimum fundamental cycle basis for graph G_{n} consists of one cycle of length 6 and all other cycles of length 4.

Let T be such a tree and \mathcal{B} be the corresponding MFCB. Let f be a function on $\{1,2, \ldots, 2 n\}$ defined as:

$$
f(x)=\left\{\begin{array}{lll}
x+n & \text { if } & x \in\{1,2, \ldots, n\} \\
x-n & \text { if } & x \in\{n+11, n+2, \ldots, 2 n\}
\end{array}\right.
$$

In the following lemmas we prove that the diameter of T should be bounded.
Lemma 2.2. Tree T does not contain any path of length 7, as a subtree.

Proof. For the contrary suppose that T contains path P of length 7. Without loss of generality we can suppose that $P=a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, a_{4}, b_{4}$, where $a_{i} \in A$ and $b_{i} \in B$, for any $i \in\{1,2,3,4\}$. By Theorem $2.1, \mathcal{B}$ does not have a cycle of length 8 , so $b_{4} a_{1} \notin E\left(G_{n}\right)$ and since $f\left(a_{1}\right)$ is the only vertex in A which does not connect to a_{1} in G_{n} we have $b_{4}=f\left(a_{1}\right)$. Hence, $b_{3} \neq f\left(a_{1}\right)$, which means that $a_{1} b_{3} \in E\left(G_{n}\right)$ and $C_{1}=\left(a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}\right)$ is the unique longest cycle of G_{n} and all its other cycles have length 4 . Since $a_{2} \neq a_{1}=f\left(b_{4}\right)$, we have $a_{2} b_{4}$ is an edge of G_{n}, adding which to T gives a cycle of length 6 in \mathcal{B} other than C_{1}. It is a contradiction.

Lemma 2.3. Tree T does not contain any path of length 6.

Proof. For the contrary suppose that T contains a path of length 7 called P. Without loss of generality we can suppose that $P=a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, a_{4}$, where, $a_{i} \in A$ and $b_{j} \in B$, for any $i \in\{1,2,3,4\}$ and $i \in\{1,2,3\}$. Using Theorem 2.1, we conclude that graph G_{n} has atmost one edge form the set $\left\{a_{1} b_{3}, a_{4} b_{1}\right\}$ so $a_{4}=f\left(b_{1}\right)$ or $a_{1}=f\left(b_{3}\right)$. Without loss of generality suppose that $a_{4}=f\left(b_{1}\right)$. Suppose that $B_{1}, B_{2}, B_{3} \in$ $\mathcal{B} \backslash\left\{b_{1}, b_{2}, b_{3}, f\left(a_{1}\right)\right\}$. Now, before completing the proof of this lemma we need to prove following proposition:

Proposition 2.4. With the same notation as in the proof of Lemma 2.3 the followings hold:
(i) Non of the vertices B_{1}, B_{2} and B_{3} can be connected to b_{1} or b_{3} or b_{2} in T, by an edge disjoint path from P.
(ii) At most one of the vertices B_{1}, B_{2} or B_{3} can be connected to a_{2} in T, by an edge disjoint path from P.
(iii) At most one of the vertices B_{1}, B_{2} or B_{3} can be connected to a_{3} in T, by an edge disjoint path from P.

Proof.
(i) If one of the B_{1}, B_{2} and B_{3} connect to b_{1} or b_{3} by such a path, called Q, then the length of Q is at least 2 and hence T contains a path of length at least 7 which is contrary with Lemma 2.2. Now, suppose that at least on of the B_{1}, B_{2} or B_{3} connected to b_{2} in T, with edge disjoint path Q from P. Without loss of generality suppose that B_{1} connect to b_{2} by q. Since $B_{1} \neq f\left(a_{1}\right)$ and $B_{1} \neq f\left(a_{4}\right)$, we have $\left\{B_{1} a_{1}, B_{1} a_{4}\right\} \subset E\left(G_{n}\right)$. Now, adding $B_{1} a_{1}$ and $B_{1} a_{4}$ respectively to T gives two different cycles of length 6 in \mathcal{B}, which contradicts with Theorem 2.1.
(ii) For the contrary suppose that two of the B_{i} 's, called B_{s} and B_{t}, connect to a_{2}, by such paths, Now adding the edges $a_{4} B_{2}$ and $a_{4} B_{3}$ from G_{n} to T, gives two cycles of length at least 6 in \mathcal{B}, which is a contradiction with Theorem 2.1.
(iii) The proof is exactly the same as the proof of (ii), when replacing a_{2} by a_{3}.

Now, we complete the proof of Lemma 2.3. Using Proposition 2.4 (ii) and (iii), without loss of generality we can suppose that B_{1} does not connect to neither a_{2} nor a_{3} by an edge disjoint path Q from P, in T. On the other hand by Proposition 2.4 (i), B_{1} can not be connected to non of the b_{1}, b_{2} and b_{3}. So, B_{1} should be connected to a_{1} or a_{4} by an edge disjoint path Q from P, which give a path of length at least 7 in T, which contradicts with Lemma 2.2. Hence, T does not have a path of length 6 as a subtree.

Theorem 2.5. Let T be a tree which gives an MFCB for G_{n}. Then T is isomorphic to one of the trees T_{1}, T_{2} or T_{3} shown in Figure 1.

Figure 1: Trees which give MFCB for G_{n}

Proof. By Theorem $2.1 \mathcal{B}$ has a unique cycle of length 6 . So T contains a path P of length 6 with end points a_{1} and b_{3} and $a_{1} b_{3} \in E\left(G_{n}\right)$. Suppose that $p=a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}$. Fist we note that, by Lemma 2.3 , there is not any edge disjoint path from P of length more than 1 having b_{1} or a_{3} as an end point. Now, suppose that b_{1} has a neighbor outside of P, then it should be $f\left(b_{1}\right)$ (otherwise \mathcal{B} has a second cycle of length 6). Similarly, if a_{3} has a neighbor outside of P, then it should be $f\left(a_{3}\right)$. Using Lemma 2.3, there is not any edge
disjoint path from P of length more than 2 having b_{2} or a_{2} as an end point. And if, there is an edge disjoint path $Q_{1}=a_{2}, b, a$ from P of length 2 then a should be $f\left(b_{3}\right)$ and with a similar discussion if, there is an edge disjoint path $Q_{2}=b_{2}, a^{\prime}, b^{\prime}$ from P of length 2 then b should be $f\left(a_{1}\right)$. It is easy to check that non two case of these four cases can occur at the same time, otherwise a second cycle of length 6 is in \mathcal{B}, which is a contradiction. If non of these four cases occur then $T=T_{1}$, if case 2 , or case 3 , occur, than $T=T_{2}$, finally, if case 3 or case 4 occur, then $T=T_{3}$. Moreover it is easy to check that trees T_{1}, T_{2} and T_{3} gives an MFCB for G_{n}.

References

[1] Z. Bradshaw, M. M. M. Jaradat, Minimum cycle bases for direct products of K_{2} with complete graphs, Australas. J. Combin. 43 (2009), 127-131.
[2] R. Hammack, Minimum cycle bases of direct products of complete graphs, Inform. Process. Lett. 102 (2007), no. 5, 214-218.
[3] N. Ghareghani and G. B. Khosrovshahi, Minimum cycle basis of direct product of $K_{2} \times K_{n}$, Linear Algebra Appl. 458 (2014), 671-678.
[4] J.D. Horton, A polynomial-time algorithm to find the shortest cycle basis of a graph, SIAM J. Comput. 16 (1987), 359-366.
[5] T. Kavitha, Ch. Liebchen, K. Mehlhorn, D. Michail, R. Rizzi, T. Ueckerdt, K.A. Zweig, Cycle bases in graphs characterization, algorithms, complexity, and applications, Computer Science Review 3 no. 4, (2009), 199-243.
[6] J. Leydold, P. Stadler, Classes of cycle bases, Electron. J. Combin. 5 (1998), 209-222.
[7] Ch. Liebchen, R. Rizzi, Classes of cycle bases, Discrete Appl. Math. 155 (2007), no. 3, 337-355.
[8] P. Stadler, Minimum cycle bases of Halin graphs, J. Graph Theory 43 (2003), no. 2, 150-155.
e-mail: ghareghani@ut.ac.ir

[^0]: ${ }^{1}$ speaker

