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Abstract
This paper presents the notation of quasihypergraphs and computes the number of the set of all

quasihypergraphs that are constructed on any given nonvoid set. The set of hypergraphs and arboreal
hypergraphs are special subclasses of quasihypergraphs in which we compute the number of members of
these classes via the recursive sequences. This study tries to extract a graph from arboreal hypergraph as
derivable graphs via positive relations and the notion path in arboreal hypergraph. Also, it is considered
the numerical relationship between the number of derivable graphs and the number of arboreal hyper-
graphs. The notation of valued-part in arboreal hypergraphs which is presented in this study, plays an
important role in the computation of derivable graphs.
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1 Introduction

In today’s world, most of the real problems are based on modeling graphs and graph trees. The importance
of graphs and graph trees in all engineering sciences, especially computer engineering, is not hidden from
anyone. Designing complex networks based on graphs is one of the most important issues in decision-
making today, which has many applications in all fields of natural sciences, mathematics, and engineering.
Since graphs have limitations in the collective communication of objects and cannot connect more than
two elements at the same time, the idea of hypergraphs can be particularly important in overcoming this
limitation. The structure of hypergraphs has been presented by Berge as an extension of the theory of
graphs with this the motivation that hypergraphs cover problems and shortcomings of structures of the
graph around 1960 [2]. Hypertrees or tree hypergraphs are specially connected hypergraphs that are a
generalization of trees. In the structure of hypergraphs, we can connect one group of elements with another
group of elements, and in addition, the relationship of except to except, except to whole, and whole to
whole objects is investigated. In this research, considering the importance of the theory of hypergraphs, we
specifically address the concept of hypertrees, and considering the special importance of tree graphs, we try
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to create a precise connection between tree graphs and hypertrees. We have been able to extract a tree graph
from each hypertree with special features and we have discussed its basic properties. Our main motivation
for this idea is to first consider a complex hypernetwork of a real problem model as a hypertree and create an
induction relation on this hypertree based on our goals. In fact, with this technique, we convert a complex
network into a tree graph that fulfills all our goals in this problem, and after that, engineers specializing
in programming can use the algorithms extracted from the mathematical results of that program code. To
learn more about the importance of this topic, one can read the following research, spectral moments of
hypertrees and their applications [3], topology and geometry of random 2−dimensional hypertrees [5], on the
irregularity of uniform hypergraphs [6], steiner connectivity problems in hypergraphs [4], embedding wheel-
like networks [7], computing optimal hypertree decompositions with SAT [8], distance-based topological
descriptors on ternary hypertree networks [9] and a vulnerability measure of k-uniform linear hypergraphs
[10].

Definition 1.1. [2] Let X be a finite set and P ∗(X) = {Y | ∅ ̸= Y ⊆ X}. A hypergraph on X is a pair

H = (X, {Ei}
m

i=1) such that for all 1 ≤ i ≤ m,Ei ∈ P ∗(X) and
m∪
i=1

Ei = X. The elements x1, x2, . . . , xn of

X are called hypervertices, and the sets E1, E2, . . . , Em are called the hyperedges of the hypergraph H.

Definition 1.2. [1] Let H = (X, {Ei}
m

i=1) be a hypergraph. A walk of length l in a hypergraph H is a
sequence x1 E1 x2 E2 x3 E3 . . . xl El xl+1 such that for all i ∈ {1, 2, . . . , l}, xi, xi+1 ∈ Ei. A walk of length
l in a H is said to be a path if, (i) all the vertices x1, x2, ..., xl+1 except x1 and xl+1 are distinct and (ii), all
the edges E1, E2..., El are distinct(we denote the path between of x, y by P (x, y)). If l > 1 and x1 = xl+1,
the path xl E1 x2 E2 x3 . . . xl El xl+1 is called a cycle of length l. A hypergraph H is connected if for any
two vertices a, b ∈ X there is a path joining the vertices a and b. A hypergraph H = (X, {Ei}

m

i=1) is called
an arboreal hypergraph, if it is connected, non-trivial and cycle-free.

2 On quasihypergraphs

In this section, we present the notion of quasihypergraphs and investigate of their properties. Also we
compute the number of the set of all quasihypergraphs which are constructed on any given nonvoid set.

Definition 2.1. Let X be a finite set. A quasihypergraph on X is a pair H = (X, {Ek}
m

k=1), such that for
all 1 ≤ k ≤ m, ∅ ̸= Ei ⊆ X.

From now on, we will denote the set of all quasihypergraphs on X by SH(X) and the number of elements
of any given set U by Car(U).

Lemma 2.2. Let X be a nonvoid set. Then Car(SH(X)) = 22
Car(X)−1 − 1.

Theorem 2.3. Let X be a nonvoid set. If
m∪
i=1

Ei = X, then Car(SH(X)) =

Car(X)∑
k=0

(−1)k
(
Car(X)

k

)
2ϵk ,

which ϵk = 2(Car(X)−k) − 1.

Skeleton Proof 2.4. Let Car(X) = k and ak = Car(SH(X)). Now, we compute the ak by the recursive
sequences. Let X = {x1, x2, . . . , xk} and Si = {Y ∈ SH(Xk) | Xk = X ∖ {x1, x2, . . . , xi}}. One can
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see that Car(SH(X)) = Car((

k∪
i=1

Si)
c), Car(Si) = ak−i and so ak =

Car(X)∑
k=0

(−1)k
(
Car(X)

k

)
2ϵk , which

ϵk = 2(Car(X)−k) − 1.

Corollary 2.5. Let X be a nonvoid set. Then for ϵk,i = 2(Car(X)−i−k) − 1,

1 +

Car(X)−1∑
i=0

(
Car(X)

i

) Car(X)−i∑
k=0

(−1)k
(
Car(X)− i

k

)
2ϵk,i +

Car(X)∑
k=0

(−1)k
(
Car(X)

k

)
2ϵk = 22

Car(X)−1.

2.1 On k-separated quasihypergraphs and arboreal hypergraphs

In this subsection, we introduce the notation of k-separated quasihypergraphs and compute the number
of the set of all k-separated quasihypergraphs which are constructed on any given nonvoid set. Also we
introduce a positive relation on arboreal hypergraphs which converts any arboreal hypergraph to a graph
or arboreal graph.

Definition 2.6. Let X be a nonvoid set and k ∈ N. Then H = (X, {Ei}mi=1) is called a k-separated

quasihypergraph, if for every 1 ≤ i ̸= j ≤ m,Ei ∩ Ej = ∅ and
m∪
i=1

Ei = X. We will denote the set of

k-separated quasihypergraph on X, by SH(k)(X).

Corollary 2.7. Let X be a nonvoid set and k ∈ N. Then Car(SH(k)(X)) =
1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)Car(X).

Theorem 2.8. Let H = (X, {Ei}
m

i=1) be an arboreal hypergraph. Then for all 1 ≤ t ≤ m, there exists
1 ≤ s ≤ m, such that Et ∩ Es ̸= ∅.

Proof. Let 1 ≤ t ≤ m. Since H = (X, {Ei}
m

i=1) is an arboreal hypergraph, there exists x ∈ Et and so for all
y ∈ X, there exists Et′ such that y ∈ Et′ . Now, H = (X, {Ei}

m

i=1) is a connected hypergraph, thus there
is a sequence x = x1 E1 x2 E2 x3 E3 . . . xl El xl+1 = y such that for all i ∈ {1, 2, . . . , l}, xi, xi+1 ∈ Ei. It
follows that for all 1 ≤ t ≤ m, there exists 1 ≤ s ≤ m, such that Et ∩ Es ̸= ∅.

Definition 2.9. Let H = (X, {Ei}
m

i=1) be an arboreal hypergraph and x ∈ X. Define N(x,Ei) = {y ∈
X | {x, y} ⊆ Ei} and a relation R on H by (x, y) ∈ R if and only if N(x,Ei) = N(y,Ei) and for any
i ̸= j, ∅ = N(y,Ej).

Theorem 2.10. Let H = (X, {Ei}
m

i=1) be an arboreal hypergraph. Then there exists a binary operation Θ(λ)

on R(H) such that (R(H),Θ(λ)) is a graph.

Skeleton Proof 2.11. Let R(x), R(y) ∈ R(H) and λ ∈ N. If there exists a path P (x, y) such that
Car(P (x, y)) = λ, then define Θ(λ)(R(x), R(y)) = eR(x),R(y), which eR(x),R(y) shows that there exists an edge
between of R(x), R(y) and Θ(λ)(R(x), R(y)) = e∅ shows that dose not exist any edge between of R(x), R(y).

From now on, for any given set A,B, if A ∩B ̸= ∅ and Car(A ∩B) = n, we denote it by A
n
≈ B.

Theorem 2.12. Let H = (X, {Ei}
m

i=1) be an arboreal hypergraph and x, y ∈ X. If Ei
1
≈ Ej, then

Car(P (R(x), R(y)))

⌊Car(P (x, y))

λ
⌋

= 1.



On Tree Graphs and Arboreal Hypergraphs 621

Theorem 2.13. Let H = (X, {Ei}
m

i=1) be an arboreal hypergraph. If for any Ei ∈ E there exists Ej ̸= Ei

such that Ei
≥2
≈ Ej, then (R(H),Θ(⌈m

2
⌉)) is a connected graph.

Let H = (X, {Ei}
m

i=1) be an arboreal hypergraph and k ≥ 3. We will denote Pk(H) = {Ei ∈
P ∗(X) | Ei is a k−part}.

Theorem 2.14. Let H = (X, {Ei}
m

i=1) be an arboreal hypergraph and k ≥ 3. If Car(Pk(H)) = β, then

Car(E(R(H),Θ(1))) ≥ (β(

(
k

2

)
− 1) +m).

Skeleton Proof 2.15. Let Es is a k-part hyperedge in an arboreal hypergraph H = (X, {Ei}
m

i=1). Then

there exist at least k − 1 hyperedges Ei1 , Ei2 , . . . , Eik−1
, and xs ∈ Es such that Es = {xs} ∪

k−1∪
j=1

(Es ∩ Eij ),

for all 1 ≤ j ≤ k − 1, xs ̸∈ Eij and for all 1 ≤ j′ ̸= j ≤ k − 1, Es ∩ (Eij ∩ Eij′ ) = ∅.

Theorem 2.16. Let H = (X, {Ei}mi=1) be a complete hypergraph. If for all 1 ≤ i ̸= j ≤ m,Ei
k
≈ Ej, then

(R(H),Θ(1)) ∼= K
⌊Car(X)

k
⌋
;

Theorem 2.17. Let H = (X, {Ei}mi=1) be an arboreal hypergraph and 1 ≤ i ̸= j ≤ m. Then

Ei

Car(Ei\Ej)=Car(Ej\Ej)=k
≈ Ej and Ei ̸⊆ Ej, imply Car(E(R(H)))

⌈ 1

2k

m∑
i=1

Car(Ei)⌉
= 1.

Skeleton Proof 2.18. Let x ∈ X. Then there exist Ei, Ej such that either x ∈ (Ei \ Ej) \ (Ej \ Ei),

1 ≤ i ̸= j ≤ m,Car(Ei \ Ej) = Car(Ej \ Ej) = k or Ei
k
≈ Ej. Thus we get that Car(R(x)) =

Car(Ei)

2k
.

3 Discussion of results and conclusion

The current paper has introduced the limitations of graphs and trees and introduce the notion of quasi-
hypergraphs. The main motivation of this study is make a connection between of trees and hypertrees, so
we present a positive relation on hypertrees. This study is important in application of hypergraphs on the
problems of hypernetworks in all sciences, special computer sciences.
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