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Abstract
Let G =

(
V (G), E(G)

)
be a graph. A set B ⊆ V (G) is said to be a k-total limited packing in the graph

G if |B ∩N(v)| ≤ k for each vertex v of G. The k-total limited packing number Lk,t(G) is the maximum
cardinality of a k-total limited packing in G.

Here we prove some results on the k-total limited packing numbers for graphs with emphasis on trees,
specially when k = 2. Also we give some lower and upper bounds for this parameter.
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1 Introduction

Throughout this manuscript, we consider G as a finite simple graph with vertex set V (G) and edge set
E(G). The order of graph is denoted by n and the size of graph is m.

The open neighborhood of a vertex v is denoted by N(v), and its closed neighborhood is N [v] = N(v)∪{v}.
The minimum and maximum degrees of G are denoted by δ(G) and ∆(G), respectively. The subgraph
induced by S ⊂ V (G) in a graph G is denoted by G[S].

A set S ⊆ V (G) is a dominating set in the graph G if every vertex not in S has a neighbor in S. The
domination number, denoted γ(G), is the smallest number of vertices in a dominating set. A set S ⊆ V (G)

is a total dominating set in the graph G if every vertex in V (G) is adjacent to an element of S. The total
domination number, denoted γt(G), is the smallest number of vertices in a total dominating set.

A set of vertices B ⊆ V (G) is called a packing (resp. an open packing) in G provided that N [u]∩N [v] = ∅
(resp. N(u) ∩ N(v) = ∅) for each distinct vertices u, v ∈ V (G). The maximum cardinality of a packing
(resp. open packing) is called the packing number (resp. open packing number), denoted ρ(G) (resp. ρo(G)).
For more information about these topics, the reader can consult [5] and [6]. In 2010, Gallant et al. ([4])
introduced the concept of limited packing in graphs. In fact, a set B ⊆ V (G) is said to be a k-limited
packing (kLP) in the graph G if |B ∩ N [v]| ≤ k for each vertex v of G. The k-limited packing number
Lk(G) is the maximum cardinality of a kLP in G. They also exhibited some real-world applications of
it in network security, market situation, NIMBY and codes. This concept was next investigated in many
papers, for instance, [2, 3, 10]. Similarly, a set B ⊆ V (G) is said to be a k-total limited packing (kTLP)
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if |B ∩ N(v)| ≤ k for each vertex v of G. The k-total limited packing number Lk,t(G) is the maximum
cardinality of a kTLP in G. This concept was first studied in [7] and some theoretical applications of it were
given in [8, 1]. It is easy to see that the latter two concepts are the same with the concepts of packing and
open packing when k = 1.

Here we give some lower and upper bounds for kTLP . Several sharp inequalities concerning this param-
eter are given with emphasis on trees, specially when k = 2.

For the sake of convenience, for any graph G by an η(G)-set with η ∈ {Lk, γt, ρ, ρo, Lk,t} we mean a kLP
set, TD set, packing set, open packing set and kTLP set in G of cardinality η(G), respectively.

2 Main results

Let G be a graph of order n. If k ≥ n− 1, then Lk,t(G) = n. Note that the above condition that k ≥ n− 1

can be weakened to k ≥ ∆(G). So, we only need to consider the k-TLP number for graphs G for which
k < ∆(G).

Let G be a graph of order at least n. Then, k ≤ Lk,t(G) ≤ n. In the next theorem, we give an upper
bound for the k-total limited packing number of a graph.

Theorem 2.1. Let G be a graph of order n. Then, Lk,t(G) ≤ n+ k −∆(G).

Proof. Let v′ be a vertex of maximum degree in G. If k ≥ ∆(G), then it is obvious that V (G) is a k-TLP
set of G. Thus, Lk,t(G) = n ≤ n + k −∆(G). Hence, we assume that k < ∆(G). Let S be an Lk,t(G)-set.
Since |N(v′) ∩ S| ≤ k, there are at least ∆(G) − k vertices in N(v′)\S. So, |S| ≥ ∆(G) − k. Therefore,
Lk,t(G) = |S| = n− |S| ≤ n+ k −∆(G).

We define the ζ family consisting of all graphs G constructed as follows.
Let G be a graph of order n so that V (G) = A ∪B has the following conditions:

(i) |A ∩B| = 3,

(ii) G[A] has a spanning star, and each component of G[B] is a path,

(iii) |N(v) ∩B| ≤ 2 for every vertex v ∈ B.

Figure 1 depicts a representative member of ζ.

v1

v2

v3

v4

v5

v6

v7

v8

Figure 1: A graph H ∈ ζ with A = {v1, v2, v3, v4, v5} and B = {v1, v3, v5, v6, v7, v8}.

The next corollary shows that ζ is the set of all graphs G of order n satisfying L2,t(G) = n+ 2−∆(G).
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Corollary 2.2. Let G be a graph of order n, then, L2,t(G) ≤ n+ 2−∆(G).
Moreover, L2,t(G) = n+ 2−∆(G) if and only if G ∈ ζ.

Proof. Let S be an L2,t(G)-set. Clearly, each component of G[S] is a path, and |N(v) ∩ S| ≤ 2 for every
vertex v ∈ V (G). Let v′ be a vertex of maximum degree in G. Similar to the proof of previous theorem, we
have L2,t(G) = |S| = n− |S| ≤ n+ 2−∆(G).

Let now G be a graph of order n for which L2,t(G) = n+2−∆(G). It is easy to see that G has following
properties:

(i) |N [v′] ∩ S| = 3,

(ii) V (G)\N [v′] ⊂ S.

Based on the above argument, we have G ∈ ζ with N [v′] = A and S = B.
We now prove the converse. Assume that G ∈ ζ. It suffices to show that L2,t(G) ≥ n + 2 −∆(G). Let

A∩B = {u, u′, u′′} and |A| = a+1, where v′ is a vertex of degree a in G[A]. We claim that ∆(G) = a. Every
vertex in B has degree at most two in G[B]. So, each of the vertices u, u′ and u′′ is adjacent to at most two
vertices in B. On the other side, each of u, u′, u′′ is adjacent to at most a−2 vertices in A\{u, u′, u′′}. Thus,
deg(u) ≤ a, deg(u′) ≤ a and deg(u′′) ≤ a. For each vertex v1 ∈ A\{u, u′, u′′}, v1 is adjacent to at most a− 3

vertices in A\{u, u′, u′′, v1} and at most two vertices in B. So deg(v1) ≤ a− 1 for every v1 ∈ A\{u, u′, u′′}.
For each vertex v2 ∈ B\{u, u′, u′′}, v2 is adjacent to at most a− 2 vertices in A\{u, u′, u′′} and at most two
vertices in B. Thus, deg(v2) ≤ a for every v2 ∈ B\{u, u′, u′′}. Hence, ∆(G) ≤ a. But deg(v′) ≥ a, which
implies that ∆(G) = a. Note that B is a 2-TLP of G with |B| = n − |A| + 3 = n + 2 −∆(G). Therefore,
L2,t(G) ≥ n+ 2−∆(G). So, this proof is complete.

Corollary 2.3. Let G be a r-regular graph of order n for which Lk,t(G) = n+k− r, where k ≤ r−1. Then,
r ≥ n+1

2 .

Proof. If r = n − 1, then G is a complete graph with Lk,t(G) = k + 1 for 1 ≤ k ≥ n − 2. Hence, the
result is true because r = n − 1 ≥ n+1

2 . So we assume that r ≤ n − 2. Let S be an Lk,t(G)-set with
|S| = n + k − r, and let v ∈ V (G). Since |N(v) ∩ S| ≤ k, it follows that |N(v) ∩ S| ≥ r − k. Clearly,
|S| = n − |S| = r − k. Thus, there exist exactly r − k vertices, namely v1, v2, · · · , vr−k, in N(v) ∩ S.
Inaddition, S = {v1, v2, · · · , vr−k}. Let U = V (G)\N(v). Since r < n− 2, it follows that U ̸= ϕ. Obviously,
U ⊆ S. If u ∈ U , then |N(u) ∩ S| ≤ k. So every vertex u ∈ U is adjacent to all vertices in S, i.e. each
vertex vi ∈ S is adjacent to all n− r vertices in U . notice that deg(vi) = r and vi has at least one neighbor
in N [v]. Thus, n− r + 1 ≤ r and we have r ≥ n+1

2 .

It is known that for any tree T , δ(T ) = 1. We denote the minimum degree of graph G taken over all
non-leaf vertices by δ′(T ).

Theorem 2.4. Let c ≥ 4 be a positive integer and let T be a tree of order n with δ′(T ) ≥ c. Then,
L2,t(T ) ≤ c−2

c−1n− c+ 4.

Proof. We prove this theorem by induction on the order T . We have n ≥ c+1, because δ′(T ) ≥ c. If n equal
to c+ 1, c+ 2, · · · , 2c− 1, then T is the star graph K1,c,K1,c+1, · · · ,K1,2c−2, respectively. Thus, L2,t(T ) =

3 ≤ c−2
c−1n−c+4. Suppose that for all tree T ′ of order n′ < n with δ′(T ′) ≥ c, we have L2,t(T

′) ≤ c−2
c−1n

′−c+4.
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Let now T be a tree of order n with δ′(T ) ≥ c and let S be an L2,t(T )-set. We root T at r. Assume v′ is a leaf
of T at the furthest distance from r, and v′′ is the parent of v′. Let L be the set of all leaves in N(v′′). We
have |L| ≥ c− 1, because v′′ is adjacent to at least c− 1 leaves. Suppose T ′′ be obtained from T by deleting
all the vertices of L. By induction, L2,t(T

′′) ≤ c−2
c−1 |V (T ′′)|− c+4 ≤ c−2

c−1(n− (c− 1))− c+4 = c−2
c−1n− 2c+6.

On the other hand, |L ∩ S| ≤ |N [(v′′) ∩ S| ≤ 2. Therefore, L2,t(T ) ≤ L2,t(T
′′) + 2 ≤ c−2

c−1n − 2c + 8 ≤
c−2
c−1n− c+ 4.

If diam(G) = 1, then G is a complete graph, and we know that L2,t(Kn) = 2. What can be said about
the 2-total limited packing number of graphs with diameter 2. The following theorem is the answer of this
question.

Theorem 2.5. Let c ≥ 3 be a positive integer. Then, there exists a graph G with diam(G) = 2 for which
L2,t(G) = c.

Proof. In what follows, we construct a graph G diameter 2 so that L2,t(G) = c. Assume that A =

{v1, v2, · · · , vc} and B = {u1, u2, · · · , u c(c−1)
2

} with A∩B = ϕ. Let G be a graph with vertex set V (G) = A∪B
so that G[A] = cK1 and G[B] = K c(c−1)

2

and each pair of distinct vertices in A has common neighbor in B.

Clearly, diam(G) = 2. It remains to see that L2,t(G) = c. We have |V (G)| = c+ c(c−1)
2 and ∆(G) = c(c−1)

2 +1.
Hence, by Corollary 2.2, L2,t(G) ≤ |V (G)|+ 2−∆(G) = c+ 1. But G /∈ ζ, so L2,t(G) ≤ c.

On the other hand, A ia a 2-total limited packing of G. Therefore, L2,t(G) = c.

Proposition 2.6. Let G be a graph without isolated vertex such that ∆(G) ≥ 2. Then,

L1,t(G) + 1 ≤ L2,t(G) ≤ ∆(G)2 + 1

δ(G)
L1,t(G).

Proof. The lower bound is true for ∆(G) ≥ 2 [7]. We now verify the upper bound. Let v ∈ G be an
arbitrary vertex, then the set of vertices at distance at most two from v has at most ∆(G)2 + 1 vertices.
Hence, L1,t(G) ≥ 2n

∆(G)2+1
, by greedy algorithm.

Furthermore, Lk,t(G) ≤ kn
δ(G) [7]. So, we have

L1,t(G) ≥ 2n

∆(G)2 + 1
=

2nδ(G)

(∆(G)2 + 1)δ(G)
≥ L2,t(G)

δ(G)

∆(G)2 + 1
.

Therefore,

L2,t(G) ≤ ∆(G)2 + 1

δ(G)
L1,t(G).

We can improve the above result for trees, as follows.

Theorem 2.7. Let T be a given tree with ∆(T ) ≥ 2, then

L1,t(T ) + 1 ≤ L2,t(T ) ≤ 2L1,t(T ).

Furthermore, both the following hold:

(i) L1,t(T ) + 1 = L2,t(T ) if and only if T is a star,
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(ii) L2,t(T ) = 2L1,t(T ) if and only if for any L2,t(T )-set S and any γt(T )-set D we have |N(s) ∩D| = 1

and |N(d) ∩ S| = 2 for every s ∈ S and every d ∈ D.

Proof. We have proved this theorem by contradiction.

We end with the following theorem and two examples that illustrate it.

Theorem 2.8. Let a ≥ 2 and b be two integers sush that a + 1 ≤ b ≤ 2a. Then, there exists a tree T for
which L1,t(T ) = a and L2,t(T ) = b.

Example 2.9. Let a = 4 and b = 7. Consider a star K1,4 with vertex set {r, v1, v2, v3, v4} and deg(r) = 4.
Let T be the tree obtained from K1,4 by adding two leaves ui and u′i to each vi for 1 ≤ i ≤ 2 and one leaf
u3 to v3. Figure 2 depicts T .

u1 u′1

u2

u′2

u3

v1

v2

v3

v4
r

Figure 2: graph T

It is easy to see that {u1, u′1, u2, u′2, u3, v1, v4} is an L2,t(T )-set. On the other hand, L1,t(T ) = 4.

Example 2.10. Assume now that a = 5 and b = 10. Let P = v1v2 · · · v5 be a path. We add two leaves
ui1 and ui2 to each vi, and obtain tree T . Observe that {u11 , u21 , · · · , ua1} is a L1,t(T )-set of T . Moreover,
{u11 , u12 , u21 , u22 · · · , u51 , u52} is a L2,t(T )-set of T .
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