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Abstract
Lee metric codes are important objects both in theory and application. In this paper, we employ a

concatenation coding scheme to construct binary codes from Lee metric codes. As a consequence of this
method, we are able to improve the best known upper bound for Lee metric codes of certain parameters
from the work of [2].
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1 Introduction

Lee metric code was introduced in [1]. Lee metric is particularly suitable for schemes that modulate the
signal by changing its phase. It has also been applied to correct burst errors in multiple dimensions, chan-
nels that have constraints or partial responses, schemes that use interleaving, and error correction for flash
memories.
Let Q be an alphabet of size |Q| = q. A code C of length n is a subset C ⊆ Qn. When q = 2, we refer
to the code as binary. The elements of C are called codewords. The minimum distance of a code C is the
minimum of the distances between two different codewords, and denoted as d. Note that in the definition
of the minimum distance of a code, we need some specific measure of distance. The Hamming distance of
two vectors is defined as the number of coordinates where they differ.
In Lee distance, the underlying alphabet is the set of integers modulo a natural number q. The dis-
tance between two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) over the this alphabet is equal to∑n

i=1min{|xi − yi|, q − |xi − yi|} where the subtraction is taken modulo q.
Also, AL

q (n, d) denotes the maximum size of Lee codes of length n over the alphabet Zq, and the minimum
distance of d. Similar to this, A2(n, d) is the maximum size of binary codes of length n and the minimum
distance d.
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The Plotkin bound states that if 2d > n then A2(n, d) ≤ 2d
2d−n . We follow the notations and terminologies

of [5] and [6].
A Lee metric code of parameters (n, q, d) can be considered as a collection of n-length vectors of the vertices
of the cycle graph Cq such that any pair of the vectors in the family are of distance at least d. The notion
of distance in the context of Lee metric code is defined as the sum of the distances between the entries
of the vector, as the vertices of Cq. In other words, every pair of the vertices of the cycle graph Cq has
a distance equal to the length of the shortest path connecting them in Cq. Now, when two vectors whose
coordinates are vertices of Cq are given, the Lee distance of them is the summation of the distances of their
corresponding entries. For instance, when q = 3, the distance of any pair of distinct vertices of C3 is equal
to 1. Thus, the induced Lee distance is in fact Hamming distance.
A basic question regarding the Lee metric code is to find the upper and lower bounds for AL

q (n, d). In this
paper, we introduce a concatenation scheme for converting any Lee metric code to a code over finite fields
and in particular over the binary field. As a consequence of this transformation, we find new upper bounds
for the maximum size of a Lee metric code for certain sets of parameters.

2 Main results

We aim to find a function f : V (Cq) → {0, 1}m with the following property. For every pair u, v ∈ V (Cq),
their graph distance (Lee distance) dG(u, v) is less than or equal to the Hamming distance dH(f(u), f(v)).
In the next lemma, we will find the smallest value of m for cycle graphs.

Lemma 2.1. Consider the cycle graph Cq. Let m be the smallest integer number such that there exists
a function f : V (Cq) → {0, 1}m with the property that ∀u, v ∈ V (Cq) : dG(u, v) ≤ dH(f(u), f(v)). Then,
m = ⌈ q2⌉.

Proof. Consider two vertices v and u of distance ⌈ q2⌉. Since the distance of any pair of the vertices is a
lower bound on m, we must have m ≥ ⌈ q2⌉. We will show a way to assign binary codes of length ⌈ q2⌉ to the
q vertices of the cycle such that the condition of the function f is satisfied. We can start by assigning the
code of all zeros to one vertex. Then, we can add ones to the right and left ends of the code and assign
them to the adjacent vertices and so forth. The following figure illustrates this method for C6.

The next lemma is an analogous result when the edges of the cycle have the same integer weight.

Lemma 2.2. Consider a cycle Cq with the constant weight w on each edge. The minimum m for which a
function f : V (Cq) → {0, 1}m exists such that ∀u, v ∈ V (Cq) : dG(u, v) ≤ dH(f(u), f(v)) is ⌈ qw2 ⌉.

Proof. The proof is similar to that of the previous.

Now, suppose that a Lee metric code over the cycle Cq of parameters (n, d) is given. We convert each
codeword of the Lee metric code to a binary codeword as follows. For every codeword (v1, . . . , vn), we
consider the binary vector (f(v1), . . . , f(vn)) in which f has the property that dG(u, v) ≤ dH(f(u), f(v)).
Here, we assumed that all the edges of Cq have weight w.
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Note that if f(vi)’s are of length m, then each vector of length n of the vertices of Cq is converted to a
binary vector of length exactly m · n. Furthermore, because of the definition of f , if two codewords of the
Lee metric code are of distance t, after the transformation, the distance of the transformed codewords is at
least w · t.

This simple observation implies the following theorem which relates A2(n, d) and AL
q (n

′, d).

Theorem 2.3. Consider a simple cycle graph Cq, and n, d ∈ N. We have AL
q (n, d) ≤ A2(n⌈ q2⌉, d).

Example 2.4. For n = 2 and d = 3, the maximum size of a Lee metric code over C6 is 4. (See tables in
[2].) Those codes on a cycle with vertices of {1, 2, 3, 4, 5, 6} respectively around the cycle can be:

11, 14, 41, 44

By 1, we know binary code for the vertex 1 is 000 and for the vertex 4, is 111. Therefore, by concatenating
method, the binary codes will be

000000, 000111, 111000, 111111

which have length 6 and minimum distance of 3.

Corollary 2.5. For weighted cycle Cq with constant weight of w, we have: AL
q (n, d) ≤ A2(n⌈wq

2 ⌉, wd)

A direct implication of the theorem and its corollary is that any upper bound on the size of the binary
code of appropriate parameters implies the same upper bound for the corresponding Lee metric code. In
the continuation, we present two special cases in which we improve the best known upper bound for the Lee
metric codes.

2.1 Improved upper bound for AL
6 (8, 14)

The lower and upper bounds of Lee metric codes have been investigated in many papers. Using the pre-
vious theorem, we can improve the upper bound for AL

6 (8, 14), which is less than or equal to 7 by linear
programming methods. (See [2], [3], [4].)
We show that the upper bound is 6. This is because there are exactly 6 binary codewords with length 24

and minimum distance 14. Therefore, we have AL
6 (8, 14) ≤ A2(8 × 3, 14) = 6. This is because we have

exactly 6 binary codewords with length 24 and a minimum distance of 14.

2.2 Improved upper bound for AL
17(4, 19)

The best upper bound for Lee codes on C17 with length 4 and minimum distance 19 is 11 (See [2]). We
can find the minimum of m in Lemma 2 for C17 with a constant weight of 2 on each edge. That length is
17. Therefore by Corollary 2, we conclude that AL

17(4, 19) ≤ A2(68, 38). On the other hand, by well-known
Plotkin bound we know A2(68, 38) ≤ 2⌊ 38

38×2−68⌋ = 8.
Finally, we must mention that this method can be extended to any alphabet size.
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Figure 1: Binary codes on C6


