SOME RESULTS ON DIRECT PRODUCT GRAPHS

Zeinab Ghasemi ${ }^{1}$
Department of Mathematics, Khoy Branch, Islamic Azad University, Khoy, Iran

Abstract

Let G be a simple graph. The super-connectivity of a connected graph $G, \kappa^{\prime}(G)$, is the minimum number of vertices whose removal results in a disconnected graph without an isolated vertex. in this paper investigate $\kappa^{\prime}\left(G \times K_{n}\right)$, where G is a non-complete graph.

Keywords: Direct product, super connectivity, vertex-cut.

1 Introduction

Let G_{1} and G_{2} be simple graphs. the direct product of G_{1} and $G_{2}, G_{1} \times G_{2}$, is the graph with the vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and two distinct vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ are adjacent if and only if $x_{1} x_{2} \in E\left(G_{1}\right)$ and $y_{1} y_{2} \in E\left(G_{2}\right)$. Clearly, $G_{1} \times G_{2}$ is commutative. By [18], $G_{1} \times G_{2}$ is connected if and only if both G_{1} and G_{2} are connected and not both are bipartite graphs.

Let $\delta(G)$ denote the minimum degree among all vertices in the graphs G. the connectivity of $G, \kappa(G)$ is the minimum size os $S \subseteq V(G)$, where $G-S$ is disconnected or $G-S \cong K_{1}$. Also, the super connectivity of $G, \kappa^{\prime}(G)$, is the minimum size of $S \subseteq V(G)$, where $G-S$ is disconnected with no isolated vertices.

In this paper, we propose $\kappa^{\prime}\left(G \times K_{n}\right)$ for an arbitrary graphs G.
Proposition 1.1. Let G be a connected graph. If G has no odd cycle, then $G \times K_{2}$ has exactly two components isomorphic to G.

Theorem 1.2. Let $S_{i}=V(G) \times v_{i}$ where $v_{i} \in V\left(K_{n}\right)$. Then $V\left(G \times K_{n}\right)=S_{1} \cup S_{2} \cup \cdots \cup S_{n}$.
Theorem 1.3. Let G be a graph with $\kappa^{\prime}(G)=t<\infty$. Then $\kappa^{\prime}\left(G \times K_{n}\right) \leq t n$.
Theorem 1.4. Let G be a cycle of length 5. Then $\kappa^{\prime}\left(G \times K_{n}\right)=\min \{5 n-8,3 n\}$ for $n \geq 3$.
Corollary 1.5. Let G be a cycle of length 5 . Then $\kappa^{\prime}\left(G \times K_{n}\right)=3 n$ for $n \geq 4$.
Theorem 1.6. Let G be a bipartite graph and $\kappa^{\prime}(G)=\infty$, then $\kappa^{\prime}\left(G \times K_{n}\right) \leq m(n-2)$, where $|V(G)|=m$.
Theorem 1.7. Let G be a graph with $\operatorname{girth}(G)=3,|V(G)|=m$ and $\kappa^{\prime}(G)=\infty$. Then $\kappa^{\prime}\left(G \times K_{n}\right) \leq$ $\min \{m n-6, m(n-1)+5,5 n+m-8\}$.

[^0]
References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Elsevier, New York, 1967.
[2] G.B. Ekinci and J.B. Gauci, The super-connectivity of odd graphs and of their kronecker double cover, RAIRO-Oper. Res. 55 (2021), 561-566.
[3] G.B. Ekinci and A. Kirlangi.c, Super connectivity of kronecker product of complete bipartite graphs and complete graphs, Disc. Math. 339 (2016), 1950-1953.
[4] G.B. Ekinci and A. Kirlangi.c, The super edge connectivity of Kronecker product graphs, RAIRO-Oper. Res. 52 (2018), 561-566.
[5] S. Ghozati, A finite automata approach to modeling the cross product of interconnection networks, Math. Compute. Model. 30 (1999), 185-200.
[6] R. Guji and E. Vumar, A note on the connectivity of kronecker products of graphs, Appl. Math. Lett. 22 (2009), 1360-1363.
[7] L. Guo and X. Guo, Super connectivity of Kronecker products of some graphs, Ars Combin. 123 (2015), 65-73.
[8] L. Guo, C. Qin and X. Guo, Super connectivity of kronecker products of graphs, Inf. Process. Lett. 110 (2010), 659-661.
[9] L. Guo, W. Yang and X. Guo, Super-connectivity of kronecker products of split graphs, powers of cycles, powers of paths and complete graphs, Appl. Math. Lett. 26 (2013), 120-123.
[10] Kh. Kamyab, M. Ghasemi and R. Varmazyar, Super connectivity of lexicographic product graphs, Ars Combin. Preprint arXiv:2009.04831[math.GR].
[11] R. Lammprey and B. Barnes, Products of graphs and applications, Model. Simul. 5 (1974), 1119-1123.
[12] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos and Z. Ghahramani, Kronecker graphs: An approach to modeling networks, J. Mach. Learn. Res. 11 (2010), 985-1042.
[13] M. Lü, C. Wu, G.L. Chen and C. Lv, On super connectivity of cartesian product graphs, Networks 52 (2008), 78-87.
[14] M. Ma, G. Liu and J.M. Xu, The super connectivity of augmented cubes, Inf. Process. Lett. 106 (2008), 59-63.
[15] D.J. Miller, The categorical product of graphs, Can. J. Math. 20 (1968), 1511-1521.
[16] F. Soliemany, M. Ghasemi and R. Varmazyar, On the super connectivity of direct product graphs, RAIRO-Oper. Res. 56 (2022), 2767-2773.
[17] F. Soliemany, M. Ghasemi and R. Varmazyar, Super connectivity of a family of direct product graphs, Int. J. Comput. Math. Comput. Syst. Theory 7 (2021), 1-5.
[18] P.M. Weichsel, The kronecker product of graphs, Proc. Am. Math. Soc. 13 (1962), 47-52.
[19] J.M. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht, 2001.
[20] J.M. Xu, M. L̈̈, M. Ma and A. Hellwig, Super connectivity of line graphs, Inf. Process. Lett. 94 (2005), 191-195.
[21] C.S. Yang, J.F. Wang, J.Y. Lee and F.T. Boesch, Graph theoretic reliable analysis for the Boolean n-cube networks, IEEE Trans. Circuits Syst. 35 (1988), 1175-1179.
[22] C.S. Yang, J.F. Wang, J.Y. Lee and F.T. Boesch, The number of spanning trees of the regular networks, Int. J. Comput. Math. 23 (1988), 185-200.
[23] J.X. Zhou, Super connectivity of direct product of graphs, Ars Math. Contemp. 8 (2015), 235-244.
e-mail: zeinabghasemi39@gmail.com

[^0]: ${ }^{1}$ speaker

