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Abstract
Let G be a simple graph. The super-connectivity of a connected graph G, κ′(G), is the minimum

number of vertices whose removal results in a disconnected graph without an isolated vertex. in this
paper investigate κ′(G×Kn), where G is a non-complete graph.
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1 Introduction

Let G1 and G2 be simple graphs. the direct product of G1 and G2, G1 × G2, is the graph with the vertex
set V (G1)× V (G2) and two distinct vertices (x1, y1), (x2, y2) are adjacent if and only if x1x2 ∈ E(G1) and
y1y2 ∈ E(G2). Clearly, G1 ×G2 is commutative. By [18], G1 ×G2 is connected if and only if both G1 and
G2 are connected and not both are bipartite graphs.

Let δ(G) denote the minimum degree among all vertices in the graphs G. the connectivity of G, κ(G) is
the minimum size os S ⊆ V (G), where G− S is disconnected or G− S ∼= K1. Also, the super connectivity
of G, κ′(G), is the minimum size of S ⊆ V (G), where G− S is disconnected with no isolated vertices.

In this paper, we propose κ′(G×Kn) for an arbitrary graphs G.

Proposition 1.1. Let G be a connected graph. If G has no odd cycle, then G × K2 has exactly two
components isomorphic to G.

Theorem 1.2. Let Si = V (G)× vi where vi ∈ V (Kn). Then V (G×Kn) = S1 ∪ S2 ∪ · · · ∪ Sn.

Theorem 1.3. Let G be a graph with κ′(G) = t < ∞. Then κ′(G×Kn) ≤ tn.

Theorem 1.4. Let G be a cycle of length 5. Then κ′(G×Kn) = min{5n− 8, 3n} for n ≥ 3.

Corollary 1.5. Let G be a cycle of length 5. Then κ′(G×Kn) = 3n for n ≥ 4.

Theorem 1.6. Let G be a bipartite graph and κ′(G) = ∞, then κ′(G×Kn) ≤ m(n−2), where |V (G)| = m.

Theorem 1.7. Let G be a graph with girth(G) = 3, |V (G)| = m and κ′(G) = ∞. Then κ′(G × Kn) ≤
min{mn− 6,m(n− 1) + 5, 5n+m− 8}.
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