

8th International Conference on Combinatorics, Cryptography, Computer Science and Computation November: 15-16, 2023

Stress indices of graphs

Harishchandra S. Ramane Mallappa P. Mellikeri¹ Department of Mathematics, Karnatak University, Dharwad -580003

Abstract

Let G = (V, E) be a simple and connected graph. stress of a vertex in a graph G is denoted by st(v) is defined as the number of shortest paths passing through internal vertex v. In this paper we have obtain stress-sum index SS(G) and second stress index $S_2(G)$ for standard graphs.

Keywords: Stress of a vertex, stress of a graph, k- stress regular graph. AMS Mathematical Subject Classification [2010]: 05C12, 05C05

1 Introduction

Centrality measure plays a very important role in the study of network analysis[8]. In 1953, Shimbel first defined the measure of stress centrality based on the shortest path. Stress centrality measure has lot of applications in social, biological networks. Topological indices are numerical parameters of a graph which characterize its topology and are usually graph invariant.

In this paper we consider simple, connected graph of order n and size m. The concept of stress of a vertex in a graph was introduced by A. Shimbel[2]. The stress is a vertex centrality measure denoted as st(v) and defined as the number of shortest paths in the graph G passing through the internal vertex v and the stress of a graph G is denoted by st(G) and defined as $st(G) = \sum_{v \in V(G)} st(v)$. The line joining the vertices u and v is denoted as uv. The shortest uv path is called geodesic of a graph G. (S. Arumugam) A graph is said to be k-stress regular if all of its vertices have stress k. For standard terminology and notation in graph theory, we follow the text-books [1, 7]. Bhargava et al., Raksha Poojary et al.[3, 5] and are two publications in which the computation of stress of a vertex have been studied in different graphs. The Somber index was defined by Gutman in [10] as $SO(G) = \sum_{uv \in E(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$ where $d_G(u)$ represents the degree of vertex u. Rajendra et al. have introduced stress-sum index SS(G) and second stress index $S_2(G)$ for graphs in [12] defined as,

$$SS(G) = \sum_{uv \in E(G)} [st(u) + st(v)]$$
(1)

 $^{1}\mathrm{speaker}$

and

$$\mathcal{S}_2(G) = \sum_{uv \in E(G)} \left[st(u) st(v) \right].$$
⁽²⁾

Eqn. (1) is equivalently given as,

$$\mathcal{SS}(G) = \sum_{v \in V(G)} [d(v)st(v)]$$

2 Computation of stress connectivity indices

The stress of each vertex in Peterson graph is 3. Hence $S_2(P) = 150$. By Eqs.(1) and (2) we have following observation.

Observation 1. For any connected graph G, then the following statements holds good.

1. $st(G) \leq \mathcal{SS}(G)$.

Equality holds if and only if graph G is complete graph K_n .

- 2. In general, SS(G) and $S_2(G)$ both are independent.
- 3. In general, st(G) and $S_2(G)$ both are independent.
- 4. If SS(G) = 0. if and only if G is complete graph K_n .
- 5. If $S_2(G) = 0$ then graph G not necessarily complete graph K_n .

Theorem 2.1. Let G be a connected regular graph of degree r. Then

$$\mathcal{SS}(G) = rst(G).$$

Proof. We have

$$\begin{split} \mathcal{SS}(G) &= \sum_{uv \in E(G)} \left[st(u) + st(v) \right] \\ &= \sum_{v \in V(G)} \left[d(v)st(v) \right] \\ &= r \sum_{v \in V(G)} \left[st(v) \right] \end{split}$$

therefore,

$$\mathcal{SS}(G) = rst(G).$$

Hence the proof.

Corollory 1. For a connected regular graph of degree r having n points with diameter 2 then $SS(G) = nr^2$.

Corollory 2. For a cycle graph C_n on *n* vertices, $SS(C_n) = nd(d-1)$ where $d = \lfloor \frac{n}{2} \rfloor$.

Corollory 3. Peterson graph P is a regular graph of degree 3. Hence SS(P) = 90.

Corollory 4. For a complete graph K_n , $n \ge 2$ then $SS(K_n) = S_2(K_n) = 0$.

Proposition 2.2. For a cycle graph C_n on n vertices, $S_2(C_n) = \frac{n}{4}d^2(d-1)^2$ where $d = \lfloor \frac{n}{2} \rfloor$.

Proof. Let $V(C_n) = \{v_1, v_2, ..., v_n\}$ be a vertex set of C_n . For any vertex v_i , we have $st(v_i) = \frac{d(d-1)}{2}$ where $d = \lfloor \frac{n}{2} \rfloor$ then

$$\begin{aligned} \mathcal{S}_2(C_n) &= \sum_{uv \in E(C_n)} [st(u)st(v)] \\ &= \sum_{v_i \in V(C_n)} [st(v_i)]^2 \end{aligned}$$

therefore,

$$\mathcal{S}_2(C_n) \;\; = \;\; rac{nd^2(d-1)^2}{4}$$

Hence the proof.

Proposition 2.3. For a path P_n on n vertices,

$$\mathcal{SS}(P_n) = 2 \left({}^n C_3 \right)$$

and

$$S_2(P_n) = \frac{n(n-1)}{2} \left[\frac{(n^2+n-1)(2n-1)}{3} - n^2(n-1) + \frac{(2n-1)(3n^2-3n-1)}{15} + (n-n^2) \right].$$

Proof. Let $u_1, u_2, ..., u_n$ be the vertices of P_n . Since u_i is adjacent to $u_{i+1}, i = 1, 2, 3, ..., n - 1$. We have $st(P_n) = {}^nC_3$ and $st(u_i) = (i - 1)(n - i)$ Therefore

$$SS(P_n) = \sum_{i=1}^{n-1} [st(u_i) + st(u_{i+1})]$$

= $2\sum_{i=1}^{n-1} [st(u_i)]$
= $2({}^nC_3).$

$$\begin{aligned} \mathcal{S}_{2}(P_{n}) &= \sum_{i=1}^{n-1} \left[st(u_{i})st(u_{i+1}) \right] \\ &= \sum_{i=1}^{n-1} \left[(i-1)(n-i)i(n-i-1) \right] \\ &= \sum_{i=1}^{n-1} \left[(n^{2}+n-1)i^{2}-2ni^{3}+i^{4}+(n-n^{2})i \right] \\ &= (n^{2}+n-1)\sum_{i=1}^{n-1}i^{2}-2n\sum_{i-1}^{n-1}i^{3}+\sum_{i=1}^{n-1}i^{4}+(n-n^{2})\sum_{i=1}^{n-1}i \\ &= \frac{n(n-1)}{2} \left[\frac{(n^{2}+n-1)(2n-1)}{3}-n^{2}(n-1)+\frac{(2n-1)(3n^{2}-3n-1)}{15}+(n-n^{2}) \right]. \end{aligned}$$

Hence the proof.

Proposition 2.4. For a complete bipartite graph $K_{m,n}$,

$$SS(K_{m,n}) = \frac{mn}{2} [n(n-1) + m(m-1)]$$

and

$$S_2(K_{m,n}) = \frac{1}{2} [mn^2(m-1)(n-1)].$$

Proof. In a complete bipartite graph $K_{m,n}$, the vertex set $V(K_{m,n})$ can be partitioned into two distinct sets namely $A = \{u_1, u_2, ..., u_m\}$ and $B = \{v_1, v_2, ..., v_n\}$. Stress of any vertex in a complete bipartite graph $K_{m,n}$ is given by,

$$st(v) = \begin{cases} \frac{n(n-1)}{2} & : \text{ if } v \in \mathbf{A} \\ \frac{m(m-1)}{2} & : \text{ if } v \in \mathbf{B} \end{cases}$$

For i = 1, 2, ..., m and j = 1, 2, 3, ..., n, every edge $u_i v_j$ in $E(K_{m,n})$, in which $u \in A$ and $v \in B$. Consider

$$SS(K_{m,n}) = \sum_{u_i v_j \in E(K_{m,n})} [st(u_i) + st(v_j)]$$

=
$$\sum_{i=1}^m st(u_i) + \sum_{j=1}^n st(v_j)$$

=
$$\frac{mn}{2} [n(n-1) + m(m-1)].$$

And

$$S_{2}(K_{m,n}) = \sum_{u_{i}v_{j} \in E(K_{m,n})} [st(u_{i})st(v_{j})]$$
$$= \frac{1}{2} [mn^{2}(m-1)(n-1)].$$

Hence the proof.

Proposition 2.5. For a wheel graph $W_{n+1} = C_n + K_1$, $n \ge 4$ on n+1 vertices,

$$SS(W_{n+1}) = 3({}^{n}C_{2}) + \frac{n(n-3)^{2}}{2}$$

and

$$S_2(W_{n+1}) = n + \frac{n^2(n-3)}{2}.$$

Proof. A wheel graph $W_{n+1} = C_n + K_1$ where $V(K_1) = \{x\}$. Let $V(C_n) = \{v_1, v_2, ..., v_n\}$ be the vertex set of cycle C_n . We have

 $st(v_i) = 1 \ \forall i, st(x) = \frac{n(n-3)}{2} \ and \ st(W_{n+1}) = {}^nC_2.$ Therefore

$$SS(W_{n+1}) = \sum_{uv \in E(W_{n+1})} [st(u) + st(v)]$$

= $3st(W_{n+1}) + (n-3)st(x)$
= $3({}^{n}C_{2}) + \frac{n(n-3)^{2}}{2}.$

and

$$\begin{aligned} \mathcal{S}_2(W_{n+1}) &= \sum_{uv \in E(W_{n+1})} [st(u)st(v)] \\ &= n + \frac{n^2(n-3)}{2}. \end{aligned}$$

Hence the proof.

Corollory 5. Let $W_{n+1} = C_n + K_1$. Then the following statement holds good.

- 1. $\mathcal{SS}(W_{n+1}) \ge st(C_n)$, for $n \ge 3$.
- 2. $S_2(W_{n+1}) \ge st(C_n)$, for $n \ge 3$.

Proposition 2.6. For a fan graph $F_{n+1} = P_n + K_1$, $n \ge 3$ on n+1 vertices,

$$SS(F_{n+1}) = \frac{(n-2)[n(n-1)+6]}{2}$$

and

$$S_2(F_{n+1}) = n - 3 + \frac{n(n-1)(n-2)}{2}.$$

Proof. A fan graph $F_{n+1} = P_n + K_1$ where $V(K_1) = \{x\}$. Let $V(P_n) = \{v_1, v_2, ..., v_n\}$ be the vertex set of path P_n . We have

$$st(v_i) = \begin{cases} 0 & : \text{ if } i = 1, n \\ 1 & : \text{ if } 2 \le i \le n - 1 \end{cases}$$

and

$$st(x) = \frac{(n-1)(n-2)}{2}.$$

Therefore

$$\mathcal{SS}(F_{n+1}) = \sum_{uv \in E(F_{n+1})} [st(u) + st(v)]$$
$$= \frac{n-2}{2} [n(n-1) + 6]$$

and

$$S_2(F_{n+1}) = \sum_{uv \in E(F_{n+1})} [st(u)st(v)]$$

= $n - 3 + \frac{n(n-1)(n-2)}{2}$

Corollory 6. Let $F_{n+1} = C_n + K_1$. Then the following statement holds good.

- 1. $\mathcal{SS}(F_{n+1}) \ge st(C_n)$, for $n \ge 3$.
- 2. $\mathcal{S}_2(F_{n+1}) \ge st(C_n)$, for $n \ge 3$.

Proposition 2.7. For a friendship graph(or windmill graph) F_n , $n \ge 2$ on 2n + 1 vertices,

$$\mathcal{SS}(F_n) = 4n^2(n-1)$$

and

$$\mathcal{S}_2(F_n) = 0.$$

Proof. In a friendship graph central vertex has stress 2n(n-1) and remaining 2n vertices have stress 0. Therefore

$$\mathcal{SS}(F_n) = 4n^2(n-1)$$

and

 $\mathcal{S}_2(F_n) = 0.$

Proposition 2.8. For a star graph $K_{1,n}$ on n+1 vertices,

$$\mathcal{SS}(K_{1,n}) = \frac{n^2(n-1)}{2}$$

and

$$\mathcal{S}_2(K_{1,n}) = 0.$$

Proof. In a star graph $K_{1,n}$, internal vertex has stress $\frac{n(n-1)}{2}$ and remaining n vertices have stress 0. Therefore

$$\mathcal{SS}(K_{1,n}) = \frac{n^2(n-1)}{2}$$

and

$$\mathcal{S}_2(K_{1,n}) = 0.$$

Hence the proof.

Proposition 2.9. For a bistar graph A(n,k) on n vertices,

$$SS(A(n,k)) = \frac{k(k+1)(2n-k-3) + ((n-1)^2 - k^2)(n-k-2)}{4}$$

and

$$S_2(A(n,k)) = \frac{k(2n-k-3)(n-k-2)(n+k-1)}{4}$$

Figure 1

Proof. Let A(n,k) be the tree as shown in the Fig. 1. Then $st(u) = \frac{k}{2}(2n-k-3)$ and $st(v) = \frac{1}{2}(n-k-2)(n+k-1)$ by computation the result follows.

References

- [1] F. Harary, *Graph theory*, Narosa publishing house, New Dehli (1969).
- [2] A. Shimbel, Structural Parameters of Communication Networks, Bulletin of Mathematical Biophysics (1953). 15, 501-507.
- [3] K. Bhargava, N. N.Dattatreya, R. Rajendra On stress of a vertex in a graph. Palest J Math 9(2)(2020), 1-11.
- [4] Raksha Poojary, K. Arathi Bhat, S. Arumugam, Manjunatha Prasad Karantha Stress of Wheel related Graphs, Springer, (2022). 427-431.
- [5] P.Raksha, K. Arathi Bhat ,S. Arumugam, K. Manjunatha Prasad The stress of a graph. Comb Optim Commun,(2021).
- [6] S.P. Borgatti, M.G. Everett, A graph-theoretic perspective on centrality, Social Networks 28 (2006), no. 4, 466–484.
- [7] G. Chartrand, L. Lesniak, P. Zhang, Graphs and Digraphs.
- [8] Kousik Das, Sovan Samanta, Madhumangal Pal, Study on centrality measures in social networks: a survey (2018).
- [9] R. Ranjan Singh, Centrality Measures : A Tool to Identify Key Actors in Social Networks.
- [10] I. Gutman, Geometric approach to degree based topological indices : Sombor indices MATCH Common, Math. Comput. Chem. 86(2021) 11-16.
- [11] V. R. Kulli: Nirmala index, Int. J. Math. Trends tech., 67 (2021), 8-12.
- [12] R. Rajendra, P. Siva Kota Reddy and C. N. Harshavardhana, Stress-Sum index for graphs, Scientia Magna 15 (2020), 94-103.

e-mail: hsramane@yahoo.com e-mail: mallappamellikeri@gmail.com