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Abstract
Let G = (V,E) be a simple and connected graph. stress of a vertex in a graph G is denoted by st(v) is

defined as the number of shortest paths passing through internal vertex v. In this paper we have obtain
stress-sum index SS(G) and second stress index S2(G) for standard graphs.
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1 Introduction

Centrality measure plays a very important role in the study of network analysis[8]. In 1953, Shimbel first
defined the measure of stress centrality based on the shortest path. Stress centrality measure has lot of
applications in social, biological networks. Topological indices are numerical parameters of a graph which
characterize its topology and are usually graph invariant.

In this paper we consider simple, connected graph of order n and size m. The concept of stress of a
vertex in a graph was introduced by A. Shimbel[2]. The stress is a vertex centrality measure denoted as st(v)
and defined as the number of shortest paths in the graph G passing through the internal vertex v and the
stress of a graph G is denoted by st(G) and defined as st(G) =

∑
v∈V (G) st(v). The line joining the vertices

u and v is denoted as uv. The shortest uv path is called geodesic of a graph G. (S. Arumugam) A graph is
said to be k-stress regular if all of its vertices have stress k. For standard terminology and notation in graph
theory, we follow the text-books [1, 7]. Bhargava et al., Raksha Poojary et al.[3, 5] and are two publications
in which the computation of stress of a vertex have been studied in different graphs. The Somber index was
defined by Gutman in [10] as SO(G) =

∑
uv∈E(G)

√
dG(u)2 + dG(v)2 where dG(u) represents the degree of

vertex u. Rajendra et al. have introduced stress-sum index SS(G) and second stress index S2(G) for graphs
in [12] defined as,

SS(G) =
∑

uv∈E(G)

[st(u) + st(v)] (1)
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and

S2(G) =
∑

uv∈E(G)

[st(u)st(v)] . (2)

Eqn. (1) is equivalently given as,

SS(G) =
∑

v∈V (G)

[d(v)st(v)]

2 Computation of stress connectivity indices

The stress of each vertex in Peterson graph is 3. Hence S2(P ) = 150. By Eqs.(1) and (2) we have following
observation.

Observation 1. For any connected graph G, then the following statements holds good.

1. st(G) ≤ SS(G).
Equality holds if and only if graph G is complete graph Kn.

2. In general, SS(G) and S2(G) both are independent.

3. In general, st(G) and S2(G) both are independent.

4. If SS(G) = 0. if and only if G is complete graph Kn.

5. If S2(G) = 0 then graph G not necessarily complete graph Kn.

Theorem 2.1. Let G be a connected regular graph of degree r.
Then

SS(G) = rst(G).

Proof. We have

SS(G) =
∑

uv∈E(G)

[st(u) + st(v)]

=
∑

v∈V (G)

[d(v)st(v)]

= r
∑

v∈V (G)

[st(v)]

therefore,

SS(G) = rst(G).

Hence the proof.

Corollory 1. For a connected regular graph of degree r having n points with diameter 2 then SS(G) = nr2.
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Corollory 2. For a cycle graph Cn on n vertices, SS(Cn)= nd(d− 1) where d= ⌊n2 ⌋.

Corollory 3. Peterson graph P is a regular graph of degree 3. Hence SS(P )= 90.

Corollory 4. For a complete graph Kn, n≥2 then SS(Kn)= S2(Kn)=0.

Proposition 2.2. For a cycle graph Cn on n vertices, S2(Cn)= n
4d

2(d− 1)2 where d= ⌊n2 ⌋.

Proof. Let V (Cn) = {v1, v2, ..., vn} be a vertex set of Cn. For any vertex vi, we have st(vi)= d(d−1)
2

where d = ⌊n2 ⌋
then

S2(Cn) =
∑

uv∈E(Cn)

[st(u)st(v)]

=
∑

vi∈V (Cn)

[st(vi)]
2

therefore,

S2(Cn) =
nd2(d− 1)2

4
.

Hence the proof.

Proposition 2.3. For a path Pn on n vertices,

SS(Pn) = 2 (nC3)

and

S2(Pn) =
n(n− 1)

2

[
(n2 + n− 1)(2n− 1)

3
− n2(n− 1) +

(2n− 1)(3n2 − 3n− 1)

15
+ (n− n2)

]
.

Proof. Let u1, u2, ..., un be the vertices of Pn. Since ui is adjacent to ui+1, i = 1, 2, 3, ..., n− 1.
We have st(Pn)= nC3 and st(ui) = (i− 1)(n− i)

Therefore

SS(Pn) =

n−1∑
i=1

[st(ui) + st(ui+1]

= 2
n−1∑
i=1

[st(ui)]

= 2 (nC3) .
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S2(Pn) =

n−1∑
i=1

[st(ui)st(ui+1)]

=
n−1∑
i=1

[
(i− 1)(n− i)i(n− i− 1)

]
=

n−1∑
i=1

[
(n2 + n− 1)i2 − 2ni3 + i4 + (n− n2)i

]
= (n2 + n− 1)

n−1∑
i=1

i2 − 2n

n−1∑
i−1

i3 +

n−1∑
i=1

i4 + (n− n2)

n−1∑
i=1

i

=
n(n− 1)

2

[
(n2 + n− 1)(2n− 1)

3
− n2(n− 1) +

(2n− 1)(3n2 − 3n− 1)

15
+ (n− n2)

]
.

Hence the proof.

Proposition 2.4. For a complete bipartite graph Km,n,

SS(Km,n) =
mn

2

[
n(n− 1) +m(m− 1)]

and

S2(Km,n) =
1

2

[
mn2(m− 1)(n− 1)].

Proof. In a complete bipartite graph Km,n, the vertex set V (Km,n) can be partitioned into two distinct sets
namely A= {u1, u2, ..., um} and B={v1, v2, ..., vn}. Stress of any vertex in a complete bipartite graph Km,n

is given by,

st(v) =

{
n(n−1)

2 : if v ∈A
m(m−1)

2 : if v ∈B

For i = 1, 2, ...,m and j = 1, 2, 3, ..., n, every edge uivj in E(Km,n), in which u∈A and v∈B.
Consider

SS(Km,n) =
∑

uivj∈E(Km,n)

[st(ui) + st(vj)]

=

m∑
i=1

st(ui) +

n∑
j=1

st(vj)

=
mn

2

[
n(n− 1) +m(m− 1)].

And

S2(Km,n) =
∑

uivj∈E(Km,n)

[st(ui)st(vj)]

=
1

2

[
mn2(m− 1)(n− 1)].

Hence the proof.

Proposition 2.5. For a wheel graph Wn+1= Cn +K1, n≥4 on n+ 1 vertices,

SS(Wn+1) = 3(nC2) +
n(n− 3)2

2
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and

S2(Wn+1) = n+
n2(n− 3)

2
.

Proof. A wheel graph Wn+1= Cn +K1 where V (K1)= {x}.
Let V (Cn) = {v1, v2, ..., vn} be the vertex set of cycle Cn.
We have

st(vi) = 1 ∀i, st(x)= n(n−3)
2 and st(Wn+1)=nC2.

Therefore

SS(Wn+1) =
∑

uv∈E(Wn+1)

[st(u) + st(v)]

= 3st(Wn+1) + (n− 3)st(x)

= 3(nC2) +
n(n− 3)2

2
.

and

S2(Wn+1) =
∑

uv∈E(Wn+1)

[st(u)st(v)]

= n+
n2(n− 3)

2
.

Hence the proof.

Corollory 5. Let Wn+1= Cn +K1. Then the following statement holds good.

1. SS(Wn+1) ≥ st(Cn), for n≥3.

2. S2(Wn+1) ≥ st(Cn), for n≥3.

Proposition 2.6. For a fan graph Fn+1= Pn +K1, n≥3 on n+ 1 vertices,

SS(Fn+1) =
(n− 2)

[
n(n− 1) + 6]

2

and

S2(Fn+1) = n− 3 +
n(n− 1)(n− 2)

2
.

Proof. A fan graph Fn+1= Pn +K1 where V (K1)= {x}.
Let V (Pn) = {v1, v2, ..., vn} be the vertex set of path Pn.
We have

st(vi) =

{
0 : if i = 1, n

1 : if 2 ≤ i ≤ n− 1

and

st(x) =
(n− 1)(n− 2)

2
.
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Therefore

SS(Fn+1) =
∑

uv∈E(Fn+1)

[st(u) + st(v)]

=
n− 2

2

[
n(n− 1) + 6]

and

S2(Fn+1) =
∑

uv∈E(Fn+1)

[st(u)st(v)]

= n− 3 +
n(n− 1)(n− 2)

2
.

Corollory 6. Let Fn+1= Cn +K1. Then the following statement holds good.

1. SS(Fn+1) ≥ st(Cn), for n≥3.

2. S2(Fn+1) ≥ st(Cn), for n≥3.

Proposition 2.7. For a friendship graph(or windmill graph) Fn, n ≥ 2 on 2n+ 1 vertices,

SS(Fn) = 4n2(n− 1)

and

S2(Fn) = 0.

Proof. In a friendship graph central vertex has stress 2n(n− 1) and remaining 2n vertices have stress 0.
Therefore

SS(Fn) = 4n2(n− 1)

and

S2(Fn) = 0.

Proposition 2.8. For a star graph K1,n on n+ 1 vertices,

SS(K1,n) =
n2(n− 1)

2
.

and

S2(K1,n) = 0.
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Proof. In a star graph K1,n, internal vertex has stress n(n−1)
2 and remaining n vertices have stress 0. There-

fore

SS(K1,n) =
n2(n− 1)

2

and

S2(K1,n) = 0.

Hence the proof.

Proposition 2.9. For a bistar graph A (n, k) on n vertices,

SS (A(n, k)) =
k(k + 1)(2n− k − 3) +

(
(n− 1)2 − k2

)
(n− k − 2)

4

and

S2 (A(n, k)) =
k(2n− k − 3)(n− k − 2)(n+ k − 1)

4
.

Figure 1
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Proof. Let A(n, k) be the tree as shown in the Fig. 1. Then st(u) = k
2 (2n − k − 3) and st(v) = 1

2(n − k −
2)(n+ k − 1) by computation the result follows.
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