$8^{\text {th }}$ International Conference on Combinatorics, Cryptography, Computer Science and Computation

November: 15-16, 2023

Stress indices of graphs

Harishchandra S. Ramane
Mallappa P. Mellikeri ${ }^{1}$
Department of Mathematics, Karnatak University, Dharwad -580003

Abstract

Let $G=(V, E)$ be a simple and connected graph. stress of a vertex in a graph G is denoted by $s t(v)$ is defined as the number of shortest paths passing through internal vertex v. In this paper we have obtain stress-sum index $\mathcal{S} \mathcal{S}(G)$ and second stress index $\mathcal{S}_{2}(G)$ for standard graphs.

Keywords: Stress of a vertex, stress of a graph, k - stress regular graph.
AMS Mathematical Subject Classification [2010]: 05C12, 05C05

1 Introduction

Centrality measure plays a very important role in the study of network analysis[8]. In 1953, Shimbel first defined the measure of stress centrality based on the shortest path. Stress centrality measure has lot of applications in social, biological networks. Topological indices are numerical parameters of a graph which characterize its topology and are usually graph invariant.

In this paper we consider simple, connected graph of order n and size m. The concept of stress of a vertex in a graph was introduced by A. Shimbel[2]. The stress is a vertex centrality measure denoted as $\operatorname{st}(v)$ and defined as the number of shortest paths in the graph G passing through the internal vertex v and the stress of a graph G is denoted by $s t(G)$ and defined as $s t(G)=\sum_{v \in V(G)} s t(v)$. The line joining the vertices u and v is denoted as $u v$. The shortest $u v$ path is called geodesic of a graph G. (S. Arumugam) A graph is said to be k -stress regular if all of its vertices have stress k. For standard terminology and notation in graph theory, we follow the text-books [1, 7]. Bhargava et al., Raksha Poojary et al. [3, 5] and are two publications in which the computation of stress of a vertex have been studied in different graphs. The Somber index was defined by Gutman in [10] as $S O(G)=\sum_{u v \in E(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}}$ where $d_{G}(u)$ represents the degree of vertex u. Rajendra et al. have introduced stress-sum index $\mathcal{S S}(G)$ and second stress index $\mathcal{S}_{2}(G)$ for graphs in [12] defined as,

$$
\begin{equation*}
\mathcal{S S}(G)=\sum_{u v \in E(G)}[s t(u)+s t(v)] \tag{1}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
\mathcal{S}_{2}(G)=\sum_{u v \in E(G)}[s t(u) s t(v)] \tag{2}
\end{equation*}
$$

\]

Eqn. (1) is equivalently given as,

$$
\mathcal{S S}(G)=\sum_{v \in V(G)}[d(v) s t(v)]
$$

2 Computation of stress connectivity indices

The stress of each vertex in Peterson graph is 3 . Hence $\mathcal{S}_{2}(P)=150$. By Eqs.(1) and (2) we have following observation.

Observation 1. For any connected graph G, then the following statements holds good.

1. $\operatorname{st}(G) \leq \mathcal{S S}(G)$.

Equality holds if and only if graph G is complete graph K_{n}.
2. In general, $\mathcal{S} \mathcal{S}(G)$ and $\mathcal{S}_{2}(G)$ both are independent.
3. In general, $\operatorname{st}(G)$ and $\mathcal{S}_{2}(G)$ both are independent.
4. If $\mathcal{S S}(G)=0$. if and only if G is complete graph K_{n}.
5. If $\mathcal{S}_{2}(G)=0$ then graph G not necessarily complete graph K_{n}.

Theorem 2.1. Let G be a connected regular graph of degree r.
Then

$$
\mathcal{S S}(G)=\operatorname{rst}(G)
$$

Proof. We have

$$
\begin{aligned}
\mathcal{S S}(G) & =\sum_{u v \in E(G)}[s t(u)+s t(v)] \\
& =\sum_{v \in V(G)}[d(v) s t(v)] \\
& =r \sum_{v \in V(G)}[s t(v)]
\end{aligned}
$$

therefore,

$$
\mathcal{S S}(G)=\operatorname{rst}(G)
$$

Hence the proof.

Corollory 1. For a connected regular graph of degree r having n points with diameter 2 then $\mathcal{S S}(G)=n r^{2}$.

Corollory 2. For a cycle graph C_{n} on n vertices, $\mathcal{S S}\left(C_{n}\right)=n d(d-1)$ where $d=\left\lfloor\frac{n}{2}\right\rfloor$.

Corollory 3. Peterson graph P is a regular graph of degree 3. Hence $\mathcal{S S}(P)=90$.

Corollory 4. For a complete graph $K_{n}, \mathrm{n} \geq 2$ then $\mathcal{S} \mathcal{S}\left(K_{n}\right)=\mathcal{S}_{2}\left(K_{n}\right)=0$.

Proposition 2.2. For a cycle graph C_{n} on n vertices, $\mathcal{S}_{2}\left(C_{n}\right)=\frac{n}{4} d^{2}(d-1)^{2}$ where $d=\left\lfloor\frac{n}{2}\right\rfloor$.
Proof. Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a vertex set of C_{n}. For any vertex v_{i}, we have $s t\left(v_{i}\right)=\frac{d(d-1)}{2}$ where $d=\left\lfloor\frac{n}{2}\right\rfloor$
then

$$
\begin{aligned}
\mathcal{S}_{2}\left(C_{n}\right) & =\sum_{u v \in E\left(C_{n}\right)}[s t(u) s t(v)] \\
& =\sum_{v_{i} \in V\left(C_{n}\right)}\left[s t\left(v_{i}\right)\right]^{2}
\end{aligned}
$$

therefore,

$$
\mathcal{S}_{2}\left(C_{n}\right)=\frac{n d^{2}(d-1)^{2}}{4}
$$

Hence the proof.

Proposition 2.3. For a path P_{n} on n vertices,

$$
\mathcal{S S}\left(P_{n}\right)=2\left({ }^{n} C_{3}\right)
$$

and

$$
\mathcal{S}_{2}\left(P_{n}\right)=\frac{n(n-1)}{2}\left[\frac{\left(n^{2}+n-1\right)(2 n-1)}{3}-n^{2}(n-1)+\frac{(2 n-1)\left(3 n^{2}-3 n-1\right)}{15}+\left(n-n^{2}\right)\right] .
$$

Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of P_{n}. Since u_{i} is adjacent to $u_{i+1}, i=1,2,3, \ldots, n-1$.
We have $\operatorname{st}\left(P_{n}\right)={ }^{n} C_{3}$ and $\operatorname{st}\left(u_{i}\right)=(i-1)(n-i)$
Therefore

$$
\begin{aligned}
\mathcal{S S}\left(P_{n}\right) & =\sum_{i=1}^{n-1}\left[s t\left(u_{i}\right)+s t\left(u_{i+1}\right]\right. \\
& =2 \sum_{i=1}^{n-1}\left[s t\left(u_{i}\right)\right] \\
& =2\left({ }^{n} C_{3}\right) .
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{S}_{2}\left(P_{n}\right) & =\sum_{i=1}^{n-1}\left[s t\left(u_{i}\right) s t\left(u_{i+1}\right)\right] \\
& =\sum_{i=1}^{n-1}[(i-1)(n-i) i(n-i-1)] \\
& =\sum_{i=1}^{n-1}\left[\left(n^{2}+n-1\right) i^{2}-2 n i^{3}+i^{4}+\left(n-n^{2}\right) i\right] \\
& =\left(n^{2}+n-1\right) \sum_{i=1}^{n-1} i^{2}-2 n \sum_{i-1}^{n-1} i^{3}+\sum_{i=1}^{n-1} i^{4}+\left(n-n^{2}\right) \sum_{i=1}^{n-1} i \\
& =\frac{n(n-1)}{2}\left[\frac{\left(n^{2}+n-1\right)(2 n-1)}{3}-n^{2}(n-1)+\frac{(2 n-1)\left(3 n^{2}-3 n-1\right)}{15}+\left(n-n^{2}\right)\right] .
\end{aligned}
$$

Hence the proof.
Proposition 2.4. For a complete bipartite graph $K_{m, n}$,

$$
\mathcal{S S}\left(K_{m, n}\right)=\frac{m n}{2}[n(n-1)+m(m-1)]
$$

and

$$
\mathcal{S}_{2}\left(K_{m, n}\right)=\frac{1}{2}\left[m n^{2}(m-1)(n-1)\right]
$$

Proof. In a complete bipartite graph $K_{m, n}$, the vertex set $V\left(K_{m, n}\right)$ can be partitioned into two distinct sets namely $A=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $B=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Stress of any vertex in a complete bipartite graph $K_{m, n}$ is given by,

$$
s t(v)= \begin{cases}\frac{n(n-1)}{2} & : \text { if } v \in \mathrm{~A} \\ \frac{m(m-1)}{2} & : \text { if } v \in \mathrm{~B}\end{cases}
$$

For $i=1,2, \ldots, m$ and $j=1,2,3, \ldots, n$, every edge $u_{i} v_{j}$ in $E\left(K_{m, n}\right)$, in which $u \in \mathrm{~A}$ and $v \in \mathrm{~B}$.
Consider

$$
\begin{aligned}
\mathcal{S S}\left(K_{m, n}\right) & =\sum_{u_{i} v_{j} \in E\left(K_{m, n}\right)}\left[s t\left(u_{i}\right)+s t\left(v_{j}\right)\right] \\
& =\sum_{i=1}^{m} s t\left(u_{i}\right)+\sum_{j=1}^{n} s t\left(v_{j}\right) \\
& =\frac{m n}{2}[n(n-1)+m(m-1)] .
\end{aligned}
$$

And

$$
\begin{aligned}
\mathcal{S}_{2}\left(K_{m, n}\right) & =\sum_{u_{i} v_{j} \in E\left(K_{m, n}\right)}\left[s t\left(u_{i}\right) s t\left(v_{j}\right)\right] \\
& =\frac{1}{2}\left[m n^{2}(m-1)(n-1)\right]
\end{aligned}
$$

Hence the proof.
Proposition 2.5. For a wheel graph $W_{n+1}=C_{n}+K_{1}, n \geq 4$ on $n+1$ vertices,

$$
\mathcal{S S}\left(W_{n+1}\right)=3\left({ }^{n} C_{2}\right)+\frac{n(n-3)^{2}}{2}
$$

and

$$
\mathcal{S}_{2}\left(W_{n+1}\right)=n+\frac{n^{2}(n-3)}{2} .
$$

Proof. A wheel graph $W_{n+1}=C_{n}+K_{1}$ where $V\left(K_{1}\right)=\{x\}$.
Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertex set of cycle C_{n}.
We have

$$
\operatorname{st}\left(v_{i}\right)=1 \forall \mathrm{i}, \operatorname{st}(x)=\frac{n(n-3)}{2} \text { and } s t\left(W_{n+1}\right)={ }^{n} C_{2} .
$$

Therefore

$$
\begin{aligned}
\mathcal{S S}\left(W_{n+1}\right) & =\sum_{u v \in E\left(W_{n+1}\right)}[s t(u)+s t(v)] \\
& =3 s t\left(W_{n+1}\right)+(n-3) s t(x) \\
& =3\left({ }^{n} C_{2}\right)+\frac{n(n-3)^{2}}{2} .
\end{aligned}
$$

and

$$
\begin{aligned}
\mathcal{S}_{2}\left(W_{n+1}\right) & =\sum_{u v \in E\left(W_{n+1}\right)}[s t(u) s t(v)] \\
& =n+\frac{n^{2}(n-3)}{2} .
\end{aligned}
$$

Hence the proof.
Corollory 5. Let $W_{n+1}=C_{n}+K_{1}$. Then the following statement holds good.

1. $\mathcal{S S}\left(W_{n+1}\right) \geq s t\left(C_{n}\right)$, for $\mathrm{n} \geq 3$.
2. $\mathcal{S}_{2}\left(W_{n+1}\right) \geq s t\left(C_{n}\right)$, for $\mathrm{n} \geq 3$.

Proposition 2.6. For a fan graph $F_{n+1}=P_{n}+K_{1}, n \geq 3$ on $n+1$ vertices,

$$
\mathcal{S S}\left(F_{n+1}\right)=\frac{(n-2)[n(n-1)+6]}{2}
$$

and

$$
\mathcal{S}_{2}\left(F_{n+1}\right)=n-3+\frac{n(n-1)(n-2)}{2} .
$$

Proof. A fan graph $F_{n+1}=P_{n}+K_{1}$ where $V\left(K_{1}\right)=\{x\}$.
Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertex set of path P_{n}.
We have

$$
s t\left(v_{i}\right)= \begin{cases}0 & : \text { if } i=1, n \\ 1 & : \text { if } 2 \leq i \leq n-1\end{cases}
$$

and

$$
s t(x)=\frac{(n-1)(n-2)}{2} .
$$

Therefore

$$
\begin{aligned}
\mathcal{S S}\left(F_{n+1}\right) & =\sum_{u v \in E\left(F_{n+1}\right)}[s t(u)+s t(v)] \\
& =\frac{n-2}{2}[n(n-1)+6]
\end{aligned}
$$

and

$$
\begin{aligned}
\mathcal{S}_{2}\left(F_{n+1}\right) & =\sum_{u v \in E\left(F_{n+1}\right)}[s t(u) s t(v)] \\
& =n-3+\frac{n(n-1)(n-2)}{2}
\end{aligned}
$$

Corollory 6. Let $F_{n+1}=C_{n}+K_{1}$. Then the following statement holds good.

1. $\mathcal{S S}\left(F_{n+1}\right) \geq \operatorname{st}\left(C_{n}\right)$, for $\mathrm{n} \geq 3$.
2. $\mathcal{S}_{2}\left(F_{n+1}\right) \geq s t\left(C_{n}\right)$, for $\mathrm{n} \geq 3$.

Proposition 2.7. For a friendship graph(or windmill graph) $F_{n}, n \geq 2$ on $2 n+1$ vertices,

$$
\mathcal{S S}\left(F_{n}\right)=4 n^{2}(n-1)
$$

and

$$
\mathcal{S}_{2}\left(F_{n}\right)=0
$$

Proof. In a friendship graph central vertex has stress $2 n(n-1)$ and remaining $2 n$ vertices have stress 0 . Therefore

$$
\mathcal{S S}\left(F_{n}\right)=4 n^{2}(n-1)
$$

and

$$
\mathcal{S}_{2}\left(F_{n}\right)=0
$$

Proposition 2.8. For a star graph $K_{1, n}$ on $n+1$ vertices,

$$
\mathcal{S S}\left(K_{1, n}\right)=\frac{n^{2}(n-1)}{2}
$$

and

$$
\mathcal{S}_{2}\left(K_{1, n}\right)=0
$$

Proof. In a star graph $K_{1, n}$, internal vertex has stress $\frac{n(n-1)}{2}$ and remaining n vertices have stress 0 . Therefore

$$
\mathcal{S S}\left(K_{1, n}\right)=\frac{n^{2}(n-1)}{2}
$$

and

$$
\mathcal{S}_{2}\left(K_{1, n}\right)=0 .
$$

Hence the proof.

Proposition 2.9. For a bistar graph $A(n, k)$ on n vertices,

$$
\mathcal{S S}(A(n, k))=\frac{k(k+1)(2 n-k-3)+\left((n-1)^{2}-k^{2}\right)(n-k-2)}{4}
$$

and

$$
\mathcal{S}_{2}(A(n, k))=\frac{k(2 n-k-3)(n-k-2)(n+k-1)}{4} .
$$

$$
A(n, k)
$$

Figure 1

Proof. Let $A(n, k)$ be the tree as shown in the Fig. 1. Then $\operatorname{st}(u)=\frac{k}{2}(2 n-k-3)$ and $\operatorname{st}(v)=\frac{1}{2}(n-k-$ $2)(n+k-1)$ by computation the result follows.

References

[1] F. Harary, Graph theory, Narosa publishing house, New Dehli (1969).
[2] A. Shimbel, Structaral Parameters of Communication Networks, Bulletin of Mathematical Biophysics (1953). 15, 501-507.
[3] K. Bhargava, N. N.Dattatreya, R. Rajendra On stress of a vertex in a graph. Palest J Math 9(2)(2020), 1-11.
[4] Raksha Poojary, K. Arathi Bhat,, S. Arumugam , Manjunatha Prasad Karantha Stress of Wheel related Graphs, Springer, (2022). 427-431.
[5] P.Raksha, K. Arathi Bhat ,S. Arumugam, K. Manjunatha Prasad The stress of a graph. Comb Optim Commun,(2021).
[6] S.P. Borgatti, M.G. Everett, A graph-theoretic perspective on centrality, Social Networks 28 (2006), no. 4, 466-484.
[7] G. Chartrand, L. Lesniak, P. Zhang, Graphs and Digraphs.
[8] Kousik Das, Sovan Samanta, Madhumangal Pal, Study on centrality measures in social networks: a survey (2018).
[9] R. Ranjan Singh, Centrality Measures : A Tool to Identify Key Actors in Social Networks.
[10] I. Gutman, Geometric approach to degree based topological indices : Sombor indices MATCH Common, Math. Comput. Chem. 86(2021) 11-16.
[11] V. R. Kulli: Nirmala index, Int. J. Math. Trends tech., 67 (2021), 8-12.
[12] R. Rajendra, P. Siva Kota Reddy and C. N. Harshavardhana, Stress-Sum index for graphs, Scientia Magna 15 (2020), 94-103.
e-mail: hsramane@yahoo.com
e-mail: mallappamellikeri@gmail.com

[^0]: ${ }^{1}$ speaker

