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Abstract
In this study, we examin the behavior of a two-level atom confined within a single-mode optical cavity

that is exposed to laser field radiation. Our analysis encompasses the consideration of the spontaneous
emission of the two-level atom and its interaction with the cavity. The behavior of this system is ex-
plored through the application of Schrödinger’s equation. The solutions to the equations describing the
atom-cavity system have been calculated for both the general case and the weak driving limit. Compar-
ative analysis of the numerical solutions with those obtained in the weak driving limit reveals a notable
agreement.
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1 Introduction

A comprehensive analysis of a two-level atom confined within an optical cavity was conducted in [1]. This
analysis utilized the master equation to describe the system’s behavior, with solutions derived for both the
general case and the weak driving limit. Subsequently, the numerical solution of the master equation was
compared with results obtained under the weak driving limit.

In this work, we approach the model from the perspective of Schrödinger’s equation. We provide solutions
in both their full and approximate forms. Lastly, we compare our findings with those reported in [1].

2 Numerical solution

Within a single-mode optical cavity, a two-level atom is confined, and the cavity subjected to stimulation by
a laser field. In this scenario, we describe the behavior of this system using the master equation as detailed
in [1]:

ρ̇ = −i[H, ρ] + κ(2aρa† − a†aρ− ρa†a) + γ(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−), (1)

here, a and a† illustrate the cavity field’s annihilation and creation operators, while σ− and σ+ denote
the atomic lowering and raising operators. Additionally, κ signifies the decay rate of the cavity field, and γ
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stands for the amplitude of the spontaneous emission rate. Now, let’s proceed to define the Hamiltonian of
this system in the interaction picture:

H = δAPσ+σ− + δCPa
†a+ g(a†σ− + aσ+) + Ea† + E∗a, (2)

where δAP = ωA − ωP signifies the detuning between the atomic resonance and the probe laser, while
δCP = ωC − ωP indicates the detuning between the cavity field and the probe laser. Additionally, we have
the atom-cavity coupling constant denoted as g, and E, which is proportionate to the amplitude of the
coherent-state probe laser at the optical frequency ωP . Rather than using the master equation, we can
describe this system using the following Hamiltonian [2–4]:

Heff = (δAP − iγ)σ+σ− + (δCP − iκ)a†a+ g(a†σ− + aσ+) + Ea† + E∗a, (3)

in order to solve this formula, the Schrödinger equation can be utilized. To proceed, we write the wave
function of the atom-cavity system as [5]:

|ψ⟩ =
∞∑
n=0

cng|ng⟩+ cne|ne⟩, (4)

where a†a|n⟩ = n|n⟩, |g⟩, and |e⟩ show the ground and excited levels of the atom, respectively. The
parameters cng and cne indicate the expansion coefficients. We employ Schrödinger’s equation, denoted as
Heff |ψ⟩ = i ˙|ψ⟩, and by equating the corresponding coefficients on both sides, we arrive at the following
result:

ċng = −(iδCP + κ)ncng − iE
√
ncn−1g − iE∗√n+ 1cn+1g − ig

√
ncn−1e, (5)

ċne = −ig
√
n+ 1cn+1g − (iδAP + γ + (iδCP + κ)n)cne − iE

√
ncn−1e − iE∗√n+ 1cn+1e, (6)

furthermore, considering the wave function’s normalization condition, we obtain the following equality:

∞∑
n=0

|cng|2 + |cne|2 = 1, (7)

in order to illustrate these equations in a real form, one can establish the following relationships:

cng = xn + iyn, (8)

cne = wn + izn, (9)

E = |E| eiθ, (10)

after substituting these relationships into equations (5) through (7), we obtain:
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ẋn = δCPnyn − κnxn + |E| cosθ
√
nyn−1 + |E| sinθ

√
n+ 1xn−1 + |E| cosθ

√
n+ 1yn+1−

|E| sinθ
√
n+ 1xn+1 + g

√
nzn−1, (11)

ẏn = −δCPnxn − κnyn − |E| cosθ
√
nxn−1 + |E| sinθ

√
nyn−1 − |E| cosθ

√
n+ 1xn+1−

|E| sinθ
√
n+ 1yn+1 − g

√
nwn−1, (12)

ẇn = g
√
n+ 1yn+1 + (δAP + δCPn)zn − (γ + κn)wn + |E| cosθ

√
nzn−1+

|E| sinθ
√
nwn−1 + |E| cosθ

√
n+ 1zn+1 − |E| sinθ

√
n+ 1wn+1, (13)

żn = −g
√
n+ 1xn+1 − (δAP + δCPn)wn − (γ + κn)zn − |E| cosθ

√
nwn−1+

|E| sinθ
√
nzn−1 − |E| cosθ

√
n+ 1wn+1 − |E| sinθ

√
n+ 1zn+1, (14)

∞∑
n=0

x2n + y2n + w2
n + z2n = 1, (15)

now, let’s address these equations in the steady-state. To numerically solve them, we truncate the
equations at a chosen value, denoted as N , and disregard the remaining equations. The choice of N should
ensure that the solutions do not significantly change for N − 1 or N + 1. This simplifies the equations
into the form AV = B, where A and B denote known matrices. By determining the V matrix, we resolve
the problem, enabling us to calculate the desired physical quantities. Specifically, we aim to determine
the behavior of the second-order correlation function at zero-time delay, which can be calculated using the
following equation:

g(2)(0) =
⟨a†2a2⟩
⟨a†a⟩2

, (16)

where:

⟨a†a⟩ =
∞∑
n=0

n(x2n + y2n + w2
n + z2n), (17)

⟨a†2a2⟩ =
∞∑
n=0

(n2 − n)(x2n + y2n + w2
n + z2n), (18)

figure 1 displays the coherence function curve plotted with the following parameters: g = 2π × 34 MHz,
κ = 2π × 4.1 MHz, γ = 2π × 2.6 MHz, |E| = 0.01κ, and θ = 0 as functions of δCP . Additionally, this curve
assumes that δAP = δCP . When we extend this analysis to different values of θ, we observe that the curve’s
behavior remains consistent and aligns precisely with the blue dashed line. For the numerical solution, we
employ N = 50 in the simulations. In the following section, we tackle these equations within the context of
weak driving, ultimately deriving the explicit form of the second-order coherence function.

3 Explicit solution

In this section, we aim to compute the equations derived in the preceding section while considering the weak
driving limit, where |E| ≪ κ. Under these conditions, we indicate the order of the unknowns concerning |E|
as follows:
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xn ∼ O(n), yn ∼ O(n), wn ∼ O(n+ 1), zn ∼ O(n+ 1), (19)

upon simplifying equations (11) through (15) to the second order of |E|, while retaining the dominant
terms in each equation, we arrive at the following results:

ẋ0 = 0, (20)

ẏ0 = 0, (21)

ẇ0 = gy1 + δAP z0 − γw0, (22)

ż0 = −gx1 − δAPw0 − γz0, (23)

ẋ1 = δCP y1 − κx1 + |E| cosθy0 + |E| sinθx0 + gz0, (24)

ẏ1 = −δCPx1 − κy1 − |E| cosθx0 + |E| sinθy0 − gw0, (25)

ẇ1 = g
√
2y2 + (δAP + δCP )z1 − (γ + κ)w1 + |E| cosθz0 + |E| sinθw0, (26)

ż1 = −g
√
2x2 − (δAP + δCP )w1 − (γ + κ)z1 − |E| cosθw0 + |E| sinθz0, (27)

ẋ2 = 2δCP y2 − 2κx2 + |E| cosθ
√
2y1 + |E| sinθ

√
2x1 + g

√
2z1, (28)

ẏ2 = −2δCPx2 − 2κy2 − |E| cosθ
√
2x1 + |E| sinθ

√
2y1 − g

√
2w1, (29)

x20 + y20 = 1, (30)

when these equations are solved in the steady-state, we can derive the following relationships:

c1g = x1 + iy1 =
−iEγ̃
g2 + κ̃γ̃

c0g = ass1 c0g, (31)

c0e = w0 + iz0 =
−Eg
g2 + κ̃γ̃

c0g = ass2 c0g, (32)

c2g = x2 + iy2 =
E2(g2 − γ̃(κ̃+ γ̃))√

2(g2 + κ̃γ̃)(g2 + κ̃(κ̃+ γ̃))
c0g = ass3 c0g, (33)

c1e = w1 + iz1 =
iE2g(κ̃+ γ̃)

(g2 + κ̃γ̃)(g2 + κ̃(κ̃+ γ̃))
c0g = ass4 c0g, (34)

here, we specify κ̃ = κ + iδCP and γ̃ = γ + iδAP , and we use assj as defined in equation (3.6) from [1].
Assuming c0g = 1, which corresponds to x0 = 1 and y0 = 0, we find that the solutions in equations (31) to
(34) coincide with those given in equation (3.6) from [1]. The difference arises because [1] initially considers
c0g = 1, but in a general case, we can consider c0g as a complex quantity in the form of eiϕ, where ϕ is an
arbitrary phase constant. Importantly, this phase constant has no impact on the ultimate physical solution
of the problem. Now, let’s proceed to calculate the second-order coherence function up to the dominant
order as follows:

g(2)(0) ≃ 2(x22 + y22)

(x21 + y21)
2
=

2 |c2g|2

|c1g|4
=

2 |ass3 |2

|ass1 |4 |c0g|2
=

2 |ass3 |2

|ass1 |4
, (35)

this corresponds precisely to the expression in equation (3.8) from [1]. The final equation is included
due to the condition |c0g|2 = 1. Upon completing the calculations, the results are as follows:
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Figure 1: This figure illustrates the second-order coherence function curves for specified values versus probe
laser detuning from the atomic resonance. The dashed curve corresponds to equation (16), while the solid
curve corresponds to equation (36).

g(2)(0) =
s1s2

s23(x
2
0 + y20)s4

=
s1s2
s23s4

, (36)

where the variables are outlined as:

s1 = δ2AP δ
2
CP + δ2APκ

2 − 2δAP δCP g
2 + δ2CPγ

2 + g4 + 2g2γκ+ γ2κ2, (37)

s2 = δ4AP + 2δ3AP δCP + δ2AP δ
2
CP + 2δ2AP g

2 + 2δ2APγ
2 + 2δ2APγκ+ δ2APκ

2 + 2δAP δCP g
2 + 2δAP δCPγ

2+

δ2CPγ
2 + g4 − 2g2γ2 − 2g2γκ+ γ4 + 2γ3κ+ γ2κ2, (38)

s3 = δ2AP + γ2, (39)

s4 = δ2AP δ
2
CP + δ2APκ

2 + 2δAP δ
3
CP − 2δAP δCP g

2 + 2δAP δCPκ
2 + δ4CP − 2δ2CP g

2 + δ2CPγ
2 + 2δ2CPγκ+

2δ2CPκ
2 + g4 + 2g2γκ+ 2g2κ2 + γ2κ2 + 2γκ3 + κ4, (40)

now, in figure 1, we can depict the curve corresponding to equation (36), derived under the weak field
limit, illustrated as a solid pink line for given values in terms of δCP . The figure vividly demonstrates
a remarkable agreement between the numerically generated results and the predictions within the weak
driving limit. It’s worth noting that this figure bears a striking resemblance to figure 3.1 featured in [1],
which validates the accuracy of our calculations.

Conclusions

This work investigates the behavior of a two-level atom confined in a single-mode optical cavity in the
steady-state. We have calculated the Schrödinger equation for this system in both the general case and
the weak driving limit. The curves plotted based on these calculations demonstrate a consistent agreement
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between the two methods. Regardless of whether we employ Schrödinger’s equation or the master equation
to describe the atom-cavity system’s behavior, the outcomes remain consistent. Furthermore, these results
remain unaffected by the θ phase of the probe laser.
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