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 ABSTRACT 

The work is devoted to the geodetic number of a graph in logistics terms. A logistics model is 

introduced based on the concept of the geodetic number of a graph. The geodetic numbers are found for 

the graphs of the five regular polyhedra and the lattice graphs. An application of a bipyramidal structure 

in tourism logistics is demonstrated. 
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1 INTRODUCTION 

Innovative service technologies in tourism include, but not limited to, the followings: organizing 

catering, excursions, expanding the number of tourist attractions, etc. For the improvement of service 

quality, it is necessary to elaborate optimal transportation schemes between a given number of nodes 

connected by some network (graph), in which the problem of finding optimal logistics models comes 

first. When constructing optimal transportation plans, there arise problems of optimizing time-dependent 

or multi-path processes, and thus it is important to study and construct special communication schemes 

for which optimization problems are effectively solved. 

This study proposes a new logistics model based on the concept of geodetic generators. With 

regard to logistics, the main advantage of this model is that the manager can concentrate on running 

logistics only between a number of main nodes of the network (main transportation hubs), called geodetic 

generators. From the optimization standpoint, it is convenient to deliver resources to the rest of the nodes 

of the network because each node of the network is located on some geodesic path connecting two of the 

generators. Methodologically, we follow the approach outlined in [1]. 

 

2 THE PROBLEM STATEMENT 

We solve the problem of finding geodetic generators of the graph of each regular polyhedra as well 

as other important graphs. Historically, the concept of geodetic number of a connected graph ( , )G V E=  

and the concept of geodetic generators of G  were first introduced by Harary, Loukakis and Tsouros [2]. 

Let S V  be some set of vertices of G . The geodesic closure of S  is defined to be the set of all vertices 

u V  that appear on geodesic paths in G , connecting all possible pairs of nodes in S . If the closure of 

S  contains all the vertices of G , then the nodes in S  are called geodetic generators. The geodetic 

number of G  is denoted ( )g G  and is defined to be the minimum size of S , that is, the minimum number 

of generators. In [7] it is shown that finding ( )g G  is an NP-hard problem and an algorithm is given for 

finding ( )g G . By now, the geodesic numbers are known for some classes of graphs; see [2, 3, 4] and 

references therein. In particular, in [4], estimates are obtained for a variation of the geodetic number of G

called the strong edge geodesic number, and an application of this number is presented for constructing a 

patrol scheme for an urban road network. 
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The geodetic number of a graph introduced in [2] has two well-known [5] applications; one in 

location theory and the other in convexity theory. In this paper, the geodetic number is also used in 

tourism logistics and is identified for the graphs of the five regular polyhedra and for the lattice graphs. 

 

3 REGULAR POLYHEDRA 

In this section, we show that for the graphs of all regular centrally symmetric polyhedra, i.e., the 

graphs of the octahedron, cube, dodecahedron and icosahedron (the tetrahedron is an exception since it 

has no center of symmetry), the geodetic number is 2 ; moreover, as two generators there can be taken 

any pair of centrally symmetric vertices. Note first that the geodetic number of the tetrahedron is equal to 

4  since the graph of this polyhedron is a complete graph on 4  vertices [2]. 

 

Figure 1: Dodecahedron with a pair of centrally symmetrical vertices, N  and S  

Consider the other four regular polyhedra, starting with the dodecahedron. Vertices N  and S  of 

the dodecahedron, chosen to be symmetrical with respect to the center of the dodecahedron, are 

conventionally associated with the north and south poles, respectively. One of possible choices of N  and 

S  is shown in Figure 1. The graph-theoretic distance between vertices N  and S  is equal to 5  in the 

sense that these vertices can be connected by a path of length 5 , i.e., a (simple) path of 5 edges of the 

graph, but N  and S  cannot be connected by a path with fewer edges. It is easy to check that each vertex 

of the dodecahedron is included in some path of length 5 , connecting N  and S . Thus, vertices N  and S  

are geodetic generators of the graph of the dodecahedron, and the geodetic number is equal to 2 . 

Similarly, we have shown that the geodetic number of the cube, octahedron, and icosahedron is also equal 

to 2 , and in each case we can take any pair of centrally symmetric vertices of the corresponding 

polyhedron as geodetic generators. Clearly, the geodetic number of the graph of a polyhedron is equal to 

2  whenever the polyhedron has the following two properties: 

1) the polyhedron has a center of symmetry, and  

2) one can cover all vertices of the polyhedron by the action of the stabilizer of the set { , }N S  on 

one geodesic path connecting N  and S . 

Note that the geodetic number is equal to 2  not only for the graph of the octahedron, but also for 

the graph of any so-called bipyramid, i.e., a polyhedron with a bipyramidal structure, in which two 

vertices can be distinguished ( N  and S ) so that any other vertex of the polyhedron is adjacent either to 

N  or to S  (or both); see [6]. An ordinary octahedron is an example of one of the simplest bipyramids. 

Bipyramids of general form are also studied in [6]; in particular, a toroidal bipyramid with 8  vertices is 

mentioned, which has two polyhedral realizations having the same graph but not having a single common 

face [7]. 

Bipyramidal graphs can be used in the design of tourist attractions; for example, the network in Fig. 

2 with three routes between the hotel ( N ) and airport ( S ), each passing through a respective tourist 
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attraction—A1, A2, A3—so that a tourist is able to choose an attraction according to his needs and budget 

for an appropriate additional fee. Let us recall that there are different types of tourist attractions; for 

example, cultural-historical, recreational, service (for example, visiting a restaurant with exotic cuisine), 

anthropological (ethnic), event-based, and mythological [8]. Thus, each tourist is able to choose the 

attraction that suits him, while the tourism business will be able to generate surplus. 

 

 

Figure 2: The simplest bipyramidal scheme in which A1, A2, and A3 are tourist attractions of three 

different types 

 

4 LATTICE GRAPHS 

In this section, we determine the geodetic numbers of the graphs of cylindrical and toroidal lattices. 

The case of a plane rectangular lattice is addressed in [2]; its size is 4 4 (that is, four rows and four 

columns of quadrilateral regions) and its geodetic number is equal to 2 ;  such a lattice can serve as a 

model for the road network in a city such as Manhattan. 

 

Figure 3: The lattice graphs on the topological disk in the shape of a square (left), cylinder (middle), and 

the torus (right) 

It is mentioned in [2] that the geodetic number of any plane lattice graph is equal to 2 , in which 

case a possible pair of generators is denoted by N  and S  in Figure 3 (left). Pairs of generators N  and S

are also shown (respectively) for the cylindrical lattice in Figure 3 (middle) and the toroidal one in Figure 

3 (right); to obtain actual cylinder, or the torus, one should identify, in pairs, the opposite sides of the 

rectangles as indicated by arrows in Figure 3, middle and right, respectively. In general, it can be shown 

that in the case in which n  is even, the graph of any n n  lattice in the plane, cylinder, or the torus has 
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geodetic number equal to 2 .  Besides, we can show that if n  is odd, then the geodetic number of the 

graph of any n n  lattice is equal to 3  or 5 in the cylinder or torus, respectively. 

It is interesting to turn this combinatorial problem into a geometric one. For that, we shall measure 

the Manhatten distance between two nodes of a network not just as the number of edges in a geodesic 

path connecting those nodes but as the sum of the geometric lengths of those edges in an appropriate 

geometric realization. The easiest way is to realize a given plane lattice in some Euclidean space so that 

all edges are represented by line segments of unit length; if n  is even, each cylindrical n n  lattice is 

straightforwardly realized in (Euclidean) 3 -space as a prism, while each toroidal n n  lattice is 

geometrically realized in a suitable duoprism in 4 -space [9, 10]. Furthermore, in both cases a pair of 

generators is provided by any pair of centrally symmetric nodes (with respect to the origin). 

 

5 CONCLUSION 

In Section 2, the known notion of geodetic number acquires a new interpretation in logistics 

networks. In Section 3, the geodetic numbers are identified for the graphs of the five regular polyhedra 

and conditions are given that are sufficient to ensure that for the geodetic number of the graph of a 

polyhedron is equal to 2 .  As part of future research, it is worth (1) checking whether these conditions 

apply to the graphs of five regular polyhedra and (2) giving a description of the class of polytopes with 

geodesic number equal to 2 . Regarding regular polyhedra, it would be interesting to find the total number 

of geodesics connecting N  and S , and then determine how many of them are geometrically incongruent. 

In Section 4, the geodetic numbers are determined for the lattice graphs in the plane, cylinder, and the 

torus.  
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