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Abstract

We analyze and approximate the elements of a band matrix function and present methods for com-

puting the matrix function and its trace with a complexity of O(n). We also present an O(1) algorithm

for the function of band-Toeplitz matrices.
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1 Introduction

Recently, there has been interest in computing matrix functions, such as the matrix exponential or the
matrix square root [8]. Function of a matrix apear in sevral problems, including the numerical solution
of partial differential equations [6], electronic structure calculations [1], and social network analysis [7]. A
matrix function, as an analytic function f of a square matrix A, can be represented through a contour
integral,

f(A) :=
1

2πi

∫
Γ
f(z)(zI −A)−1dz,

where f is analytic on and inside a closed contour Γ that encloses Λ(A)[8]. Furthermore, if A is diagonalizable,
that is,

A = P


λ1

. . .

λn

P−1,
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then to compute f(A), we will have:

f(A) = P


f(λ1)

. . .

f(λn)

P−1.

Cortinovis et al. [4] presented a divide-and-conquer algorithm, Algorithm 1, for functions of band matrices.
Here, we investigate Algorithm 1 in Section 3 and derive a new error bound for approximating the trace of
a band matrix function.

In Section 3, we first establish approximations for the elements of the band matrix function (Theorem
3.1). Then, we propose new approximations and error bounds for the trace of the band matrix function
(Corollary 3.3). Additionally, we offer an approximation for a submatrix of the band matrix function
(Theorem 3.4). In Section 4, we introduce an algorithm based on the work of [4], employing a new definition
for a submatrix. In Section 5, we introduce a new method with a computational complexity of O(1) for
computing the function of band-Toeplitz and band-Hankel matrices.

2 Preliminaries

Before delving into the approximation, in this section we present some notations and definitions. For an
arbitrary matrix A ∈ Cn×n, and a non-negative integer r, we define the set αp as follows:

αp(r) :=
{
t ∈ {1, . . . , n}

∣∣∣ |t− p| ≤ r
}
.

We also define the submatrix Br([A]ij) of A as follows:

Br([A]ij) := A[αi(r), αj(r)]. (1)

Based on this definition, the submatrix Br([A]ij) contains elements from matrix A being around the element
[A]ij . This submatrix has a size of sj × si, where sp = max(αp)−min(αp) + 1. Also, we define the function
φx : αx(r)→ {1, . . . , n} as follows:

φx(p) = p−min(αx(r)) + 1. (2)

Now, the field of values or numerical range for matrix A is defined as a subset of C:

W(A) := {xHAx | x ∈ Cn, ∥x∥2 = 1}.

It is worth noting that numerical range of a matrix is a convex, bounded, and compact set that contains
the eigenvalues of the matrix. Also, if Ak is a principal submatrix of A, then W(Ak) ⊆ W(A).

Now, we can state the result, due to Crouzeix and Palencia [5], that if A ∈ Cn×n and the function f is
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an analytic function over W(A) and bounded on its boundary, then

∥f(A)∥2 ≤ Q∥f∥W(A), (3)

where 2 ≤ Q ≤ 1 +
√
2, and

∥f∥W(A) := sup
z∈W(A)

|f(z)|.

The result given as (3) is helpful for finding an error bound for the approximation considered in the following
sections. Now, considering Πk as the set of polynomials of degree at most k, with pk ∈ Πk, for the entry
(i, j), we have:

∣∣∣[f(A)− pk(A)
]
ij

∣∣∣ ≤ ∥(f − pk)(A)∥2 ≤ Q∥f − pk∥W(A). (4)

3 Band Matrix Function Approximation

A matrix with the non-zero elements being located in a band around the main diagonal is called a band
matrix. An m-band matrix A is defined as follows:

[A]ij = 0, |i− j| > m,

where m is a non-negative integer number. Next, we will derive an approximation for an element of a
function of an m-band matrix.

Theorem 3.1. Let A ∈ Cn×n be an m-band matrix, and k be a non-negative integer. For an entry (i, j) of
the matrix f(A), with x :=

⌊ i+ j

2

⌋
, we have:

∣∣∣[f(A)
]
ij
−
[
f
(
Bk

)]
φx(i),φx(j)

∣∣∣ ≤ 2Q min
pk∈Πk

∥f − pk∥W(A),

where Bk := B⌈mk/2⌉
(
[A]xx

)
as defined in (1), φx is the function defined in (2), and Q = 1 +

√
2.

Proof. Assume A is an m-band matrix. We can write [Ak]ij , for k ≥ 0, as

[
Ak

]
ij
=

∑
|i−t1|≤m

∑
|t1−t2|≤m

· · ·
∑

|tk−1−j|≤m

[A]it1 [A]t1t2 · · · [A]tk−1j . (5)

For 1 ≤ p ≤ k−1, we have |tp− tp+1| ≤ m. Thus, for any i and j, using the triangle inequality and applying
inequalities between indices appropriately, we have |i − tp| ≤ pm, and |j − tp| ≤ m(k − p). Now, using the
inequalities obtained from the indices, we can deduce that all indices tp satisfy the following inequality:

∣∣∣⌊ i+ j

2

⌋
− tp

∣∣∣ ≤ ⌈mk

2

⌉
. (6)
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Now, consider the smallest submatrix that includes all the elements in A as in relation (5) based on the
inequality (6). This submatrix is Bk := B⌈mk/2⌉

(
[A]xx

)
. Since Bk is a principal submatrix, then it is

an m-band matrix. Therefore, with respect to the relation between the entries of Bk and A, that is,
[A]ij = [Bk]φx(i),φx(j), for all 0 ≤ s ≤ k, we have:

[As]ij = [Bsk]φx(i),φx(j).

Hence, for a polynomial pk ∈ Πk, we have [pk(A)]ij = [pk(Bk)]φx(i),φx(j). For [f(A)]ij , using (4) we get

∣∣∣[f(A)− pk(A)
]
ij

∣∣∣ ≤ Q∥f − pk∥W(A).

Similarly, we can apply the same for Bk and get

∣∣∣[f(Bk)− pk(Bk)
]
φx(i),φx(j)

∣∣∣ ≤ Q∥f − pk∥W(Bk).

Since Bk is a principal submatrix of A, we haveW(Bk) ⊆ W(A), which implies ∥f−pk∥W(Bk) ≤ ∥f−pk∥W(A).
Combining the two recent inequalities for A and Bk, we arrive at

∣∣∣[f(A)
]
ij
−
[
f(Bk)

]
φx(i),φx(j)

∣∣∣ ≤ 2Q∥f − pk∥W(A).

And this completes the proof.

We now have the next corollary for the elements of diagonal of pk(A).

Corollary 3.2. Let A ∈ Cn×n be an m-band matrix, and k be a non-negative integer. For pk ∈ Πk, we
have: [

pk(A)
]
ii
=

[
pk
(
Bki

)]
φi(i),φi(i)

,

where Bki := B⌈mk/2⌉
(
[A]ii

)
is as defined in (1), φi is the function as in (2), and Q = 1 +

√
2.

Proof. The proof can easily be obtained from Theorem 3.1.

Next, let us define T (k)
f (A) as follows:

T (k)
f (A) :=

n∑
i=1

(
f
(
B⌈mk/2⌉

(
[A]ii)

))
φi(i), φi(i). (7)

Then, we have the next result for approximating trace of f(A).

Corollary 3.3. Let A ∈ Cn×n be an m-band matrix, and k be a non-negative integer. Then, we have:

∣∣tr(f(A))− T (k)
f (A)

∣∣ ≤ 2nQ min
pk∈Πk

∥f − pk∥W(A),

where Q = 1 +
√
2 and T (k)

f (A) as defined in (7).
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Proof. The proof can easily be obtained from Theorem 3.1.

Theorem 3.1 was suitable for approximating an entry of the matrix f(A). However, if we are interested
in approximating f(A) entirely, then use of Theorem 3.1 incurs a high computational cost. Next, we derive
an approximation for principal submatrices of the matrix f(A) when A is an m-band matrix.

Theorem 3.4. Assume A ∈ Cn×n is an m-band matrix and k is a non-negative integer. Then we have:

∥∥∥Bη([f(A)]ii)− Bη
([

f
(
B2η

)]
ηη

)∥∥∥
2
≤ 2Q min

p∈Πk

∥f − p∥W(A),

where B2η := B2η
(
[A]ii

)
, η :=

⌈mk

2

⌉
, and Q = 1 +

√
2.

Proof. Let (i′, j′) be indices so that |i− i′| ≤ η and |i− j′| ≤ η. Then, for x = ⌊ i
′ + j′

2
⌋, we have |i− x| ≤ η,

implying that Bη([A]xx) is the principal submatrix of B2η([A]ii). According to Theorem 3.1, we have:

Bη([pk(A)]ii) = Bη
([

pk
(
B2η

)]
ηη

)
.

Now, using inequality (4) for the matrix A, we get

∥∥Bη([f(A)− pk(A)]ii
)∥∥

2
≤ Q∥f − pk∥W(A),

and, since B2η is the principal submatrix of A, we have:

∥∥Bη([f(B2η)− pk(B2η)]ηη
)∥∥

2
≤ Q∥f − pk∥W(A).

Now, by summing up the two previous inequalities, the result is at hand.

Theorem 3.4 provides us with the possibility that by a slight increase in computational cost, we can
approximate a larger number of entries of f(A). Now, considering the fact that entries far from the diagonal
become exponentially small [2], we can safely ignore them. This shows that the band matrix function is
approximately a banded matrix.

Figure 1: A part of the band of a band matrix.
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Let us assume that, by removing small entries, the function of an m-band matrix is transformed into
an m′-band matrix. On the main diagonal of this m′-band matrix, we can select three points, each at a
distance of 2m′ apart, as shown in Figure 1. Next, we draw submatrices around these points that cover the
entries of this band matrix (Theorem 3.4). In the following section, we will present a method for computing
f(A), where A is an m-band matrix.

4 Algorithm 1: Divide and Conquer Method for Band Matrix Function

Here, we present a method for computing the function of an m-band matrix. For that, we first need to define
several submatrices of the m-band matrix A ∈ Cn×n. Assume that a number s ≪ n has been chosen such
that n = ks, and also b := s

2m , where m is the bandwidth of the matrix A. Now, we define the following
matrices:

• Matrix D := blkdiag(D1, . . . , Dk),where Di := Bs/2
(
[A]ηiηi

)
and ηi :=

(2i−1)s
2 .

• Matrix B̃ := blkdiag(B1, . . . , Bk−1), where Bi := Bs/2
(
[A]βiβi

)
and βi := is by starting from index

s
2 + 1.

• Matrix C̃ := blkdiag(C
(1)
1 , C

(2)
1 , . . . , C

(1)
k−1, C

(2)
k−1), where the Ci are diagonal block submatrices of size

s
2 ×

s
2 from A starting from the entry s

2 + 1.

Now, we define B := blkdiag(Z, B̃, Z) and C := blkdiag(Z, C̃, Z), where Z := zeros( s2). Using the
decomposition introduced earlier, as A = D+B −C, we can now describe Algorithm 1, as presented in [4].

Algorithm 1 Approximation Algorithm for a Banded Matrix Function.
Input: Banded matrix A ∈ Cn×n with bandwidth m, value s for block size, and function f .
Output: Approximation approx

(s)
f (A) for f(A).

1: Compute matrices f(D), f(B̃), and f(C̃) by applying f to only the blocks Di, Bi, and Ci.
2: Define fB := blkdiag(Z, f(B̃), Z) and fC := blkdiag(Z, f(C̃), Z), where Z := zeros( s2 ).
3: approx

(s)
f (A)← f(D) + fB − fC .

In [4], the following result was established for estimating the error of Algorithm 1.

Theorem 4.1 ([4]). Let A be an m-band matrix. The output approxf (A) of Algorithm 1 satisfies:

∥f(A)− approxf (A)∥2 ≤ 4(1 +
√
2) min

p∈Πb

∥f − p∥W(A).

Theorem 4.1 ensures that Algorithm 1 converges to the solution and provides an estimate for the error.
This estimate is particularly accurate when f can be approximated with a polynomial of degree b in the
numerical range of A. Also, for Algorithm 1, the computational complexity is O(nm2) for an m-band matrix
in Cn×n.
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5 Algorithm 2: Divide and Conquer Method for Band-Toeplitz Matrix

Function

Here, we are to find an algorithm for functions of band-Toeplitz matrices. We represent Toeplitz matrices
using the complex function a in L1 on the unit circle as follows [3]:

a(x) =

∞∑
k=−∞

akx
k; x = eiθ, θ ∈ [0, 2π]. (8)

The coefficients are given by

ak =
1

2π

∫ 2π

0
a(eix)e−ikx dx. (9)

We define a Toeplitz matrix, denoted as Tn(a), as follows:

Tn(a) =



a0 a−1 a−2 . . . a−(n−1)

a1 a0 a−1 . . . a−(n−2)

a2 a1 a0 . . . a−(n−3)

...
...

... . . . ...

an−1 an−2 an−3 . . . a0


.

In other words, [Tn(a)]ij = ai−j , where ak is defined as in (9). Now, consider a non-negative integer, denoted
by m, such that for (8), we have:

a(x) =

∞∑
k=−∞

akx
k =

m∑
k=−m

akx
k.

It follows that the operator Tn(a) represents a Toeplitz matrix and is an m-band matrix. Assume that a
number s≪ n has been chosen such that n = ks, and b := s

2m .

Algorithm 2 Approximation Algorithm for a Band-Toeplitz Matrix Function.
Input: Band-Toeplitz matrix Tn(a) ∈ Cn×n with bandwidth m, value s for block size, and function f .
Output: Approximation Tapprox

(s)
f (Tn(a)) for f(Tn(a)).

1: Compute f1 := f(Ts(a)), and f 1
2
:= f(T s

2
(a)).

2: Set

f
(1)
T :=


f1

f1
. . .

f1

 , f
(2)
T :=


Z

f1
. . .

f1
Z

 , f
(3)
T :=


Z

f 1
2

. . .
f 1

2

Z

 ,

where Z := zeros( s2 ).
3: Tapprox

(s)
f (A)← f

(1)
T + f

(2)
T − f

(3)
T .
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Theorem 4.1 ensures the convergence of Algorithm 2 to f(Tn(a)). Assuming that the computational
complexities for computing f(Ts(a)) and f(T s

2
(a)) are Cs and C s

2
, respectively, the computational complexity

of Algorithm 2 can be expressed as O
(
Cs + C s

2

)
. Since s ≪ n is independent of n, the complexity of

approximation is of O(1).

5.1 Divide and Conquer Method for Persymmetric Band-Hankel Matrix Function

Let us define Jn ∈ Rn×n as a backward identity matrix. This means that for elements with i + j = n + 1,
we have [Jn]ij = 1, while for all other elements, [Jn]ij = 0. For example, in the case of n = 3, we have:

J3 :=


0 0 1

0 1 0

1 0 0

 .

We call Hn a persymmetric band-Hankel matrix if there exists a symmetric band-Toeplitz matrix Tn(a) such
that [3]

Hn = JnTn(a).

In fact, we also have Hn = JnTn(a) = Tn(a)Jn. Now, let f be an analytic function as

f(z) =
∞∑
k=0

αkz
k.

To compute f(Hn), we can write

f(Hn) = Jn
f(Tn(a))− f(−Tn(a))

2
+

f(Tn(a)) + f(−Tn(a))

2
. (10)

Now, by computing f(Tn(a)) and f(−Tn(a)), we can compute f(Hn). For that, we simply utilize Algorithm
2 for both f(Tn(a)) and f(−Tn(a)), and subsequently apply the equation (10).

6 Conclusion

We have proposed new methods for computing functions of band matrices, band-Toeplitz matrices, and
band-Hankel matrices. We have also presented approximations for the entries and the trace of functions of
band matrices.
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