On the Normality of t-Cayley Hypergraphs with Valency 3

Reza Bayat Tajvar ${ }^{1}$
Faculty of Basic Science, Khatam-ol-Anbia (PBU) University, Tehran, Iran

Abstract

A t-Cayley hypergraph $X=t-C a y(G, S)$ is called normal for a finite group G, if the right regular representation $R(G)$ of G is normal in the full automorphism group $\operatorname{Aut}(X)$ of X. In this paper, we classify all normality of t-Cayley hypergraph, where G is a finite abelian group and $|S|=3$.

Keywords: hypergraph, Cayley hypergraph, t-Cayley hypergraph
AMS Mathematical Subject Classification [2010]: 13D45, 39B42

1 Introduction

A hypergraph X is a pair (V, E), where V is a finite nonempty set and E is a finite family of nonempty subsets of V. The elements of V are called hypervertices or simply vertices and the elements of E are called hyperedges or simply edges. Two vertices u and v are adjacent in hypergraph $X=(V, E)$ if there is an edge $e \in E$ such that $u, v \in e$. If for two edges $e, f \in E$ holds $e \cap f \neq 0$, we say that e and f are adjacent. A vertex v and an edge e are incident if $v \in e$. We denote by $X(v)$ the neighborhood of a vertex v, i.e. $X(v)=\{u \in V:\{u, v\} \in E\}$. Given $v \in V$, denote the number of edges incident with v by $d(v) ; d(v)$ is called the degree of v. A hypergraph in which all vertices have the same degree d is said to be regular of degree d or d-regular. The size, or the cardinality, $|e|$ of a hyperedge is the number of vertices in e. A hypergraph $X=(V, E)$ is simple if no edge is contained in any other edge and $|e| \geq 2$ for all $e \in E$. A hypergraph is known as uniform or k-uniform if all the edges have cardinality k. Note that an ordinary graph with no isolated vertex is a 2-uniform hypergraph.

Let $X_{1}=\left(V_{1}, E_{1}\right)$ and $X_{2}=\left(V_{2}, E_{2}\right)$ be two hypergraphs. A homomorphism $\varphi: X_{1} \rightarrow X_{2}$ is a map $\varphi: V_{1} \rightarrow V_{2}$ that preserves adjacencies, that is, $\varphi(e) \in E_{2}$ for each $e \in E_{1}$. When φ is a bijection and its inverse map is also a homomorphism then φ is an isomorphism between the two hypergraphs and X_{1} and X_{2} are isomorphic.

An isomorphism from a hypergraph X onto itself is an automorphism. The automorphism group of X is denoted by $\operatorname{Aut}(X)$.

For a group G and a subset S of G such that $1_{G} \notin S$ and $S=S^{-1}:=\left\{s^{-1} \mid s \in S\right\}$, the Cayley graph $X=\operatorname{Cay}(G, S)$ of G with respect to S is defined as the graph with vertex set $V(X)=G$, and edge set $E(X)=\left\{\{g, h\} \mid h g^{-1} \in S\right\}$.

[^0]Obviously, the Cayley graph $\operatorname{Cay}(G, S)$ has valency $|S|$, and it easily follows that $\operatorname{Cay}(G, S)$ is connected if and only if $G=\langle S\rangle$, that is, S generates G. For a group G, denote $R(G)$ as the right regular representation of G. Define $\operatorname{Aut}(G, S):=\left\{\alpha \in \operatorname{Aut}(G) \mid S^{\alpha}=S\right\}$, acting naturally on G. Then, it is easy to see that each Cayley graph $X=\operatorname{Cay}(G, S)$ admits the group $R(G) \cdot \operatorname{Aut}(G, S)$ as a subgroup of automorphisms. Moreover $($ see $[4]), N_{\operatorname{Aut}(X)}(R(G))=R(G) \cdot \operatorname{Aut}(G, S)$. Note that $R(G) \cong G$. So we can identify G with $R(G) \leq \operatorname{Aut}(X)$ for $X=\operatorname{Cay}(G, S)$. The Cayley graph $X=\operatorname{Cay}(G, S)$ is called normal if G is normal in $\operatorname{Aut}(X)$. In this case $\operatorname{Aut}(X)=G \cdot \operatorname{Aut}(G, S)$.

Let G be a group and let S be a set of subsets $s_{1}, s_{2}, \ldots, s_{n}$ of $G-\left\{1_{G}\right\}$ such that $G=\left\langle\bigcup_{i=1}^{n} s_{i}\right\rangle$, that is, $\bigcup_{i=1}^{n} s_{i}$ generates G. A Cayley hypergraph $C H(G, S)$ has vertex set G and edge set $\{\{g, g s\} \mid g \in G, s \in S\}$, where an edge $\{g, g s\}$ is the set $\{g\} \cup\{g x \mid x \in s\}$. For all $s \in S$, if $|s|=1$, then the Cayley hypergraph is a Cayley graph. Therefore a Cayley hypergraph is a generalization of a Cayley graph [5]. Also, Lee and Kwon [5] proved that a hypergraph X is Cayley if and only if $\operatorname{Aut}(X)$ contains a subgroup which acts regularly on the vertex set of X.

In 1994, Buratti [3] introduced the concept of a t-Cayley hypergraph as follows. Let G be a finite group, S a subset of $G-\left\{1_{G}\right\}$ and t an integer satisfying $2 \leq t \leq \max \{o(s) \mid s \in S\}$. The t-Cayley hypergraph $X=t-C a y(G, S)$ of G with respect to S is defined as the hypergraph with vertex set $V(X)=G$, and for $E \subseteq G$,

$$
E \in E(X) \Longleftrightarrow \exists g \in G, \exists s \in S: E(X)=\left\{g s^{i} \mid 0 \leq i \leq t-1\right\}
$$

Note that any 2-Cayley hypergraph is a Cayley graph and vice versa. For any $s_{i} \in S$, if $s_{i}=\left\{s, \ldots, s^{t-1}\right\}$ for some $s \in G-\left\{1_{G}\right\}$, then the Cayley hypergraph $C H(G, S)$ is a t-Cayley hypergraph $t-C a y(G, S)$. Hence a Cayley hypergraph is a generalization of a t-Cayley hypergraph. In fact every t-Cayley hypergraph is a subclass of the more general Cayley hypergraphs, or group hypergraphs which is defined by Shee in [6].

The concept of normality of the Cayley graph is known to be of fundamental importance for the study of arc transitive graphs. So, for a given finite group G, a natural problem is to determine all the normal or non-normal Cayley graph of G. Some meaningful results in this direction, especially for the undirected Cayley graphs, have been obtained. Baik et al. [1] determined all non-normal Cayley graphs of abelian groups of valency at most 4 and later [2] dealt with valency 5. For directed Cayley graphs, Xu et al. [7] determined all non-normal Cayley graphs of abelian groups of valency at most 3 . In this paper, we classify all normality of t-Cayley hypergraph, where G is a finite abelian group and $|S|=3$.

2 Main results

Proposition 2.1. Let G be a finite group, and let S be a generating set of G not containing the identity 1_{G}, and α an automorphism of G. Then t-Cayley hypergraph $X=t-C a y(G, S)$ is normal if and only if $X^{\prime}=t-C a y\left(G, S^{\alpha}\right)$ is normal.

Proof. Let $A^{\prime}=\operatorname{Aut}\left(X^{\prime}\right)$. It will be shown that (1) $\alpha^{-1} A \alpha=A^{\prime}$, and (2) $\alpha^{-1} R(G) \alpha=R(G)$. For the first equation, we suppose that $\alpha^{-1} \rho \alpha \in \alpha^{-1} A \alpha$, where $\rho \in A$. Now if $E^{\prime} \in E\left(X^{\prime}\right)$, then $E^{\prime}=\left\{x s^{i} \mid 0 \leq i \leq t-1\right\}$ for some $x \in G$ and $s \in S$. Therefore

$$
\begin{aligned}
\left(E^{\prime}\right)^{\alpha^{-1} \rho \alpha} & =\left\{\left(x s^{i}\right)^{\alpha^{-1} \rho \alpha} \mid 0 \leq i \leq t-1\right\} \\
& =\left\{x^{\alpha^{-1}}, x^{\alpha^{-1}}(s)^{\alpha^{-1}}, \ldots, x^{\alpha^{-1}}\left(s^{t-1}\right)^{\alpha^{-1}}\right\}^{\rho \alpha} .
\end{aligned}
$$

It follows that,

$$
\left(E^{\prime}\right)^{\alpha^{-1} \rho \alpha}=\left\{y, y s^{\prime}, y\left(s^{\prime}\right)^{2}, \ldots, y\left(s^{\prime}\right)^{t-1}\right\}^{\rho \alpha}
$$

where $s^{\prime}=s^{\alpha^{-1}}$ and $x^{\alpha^{-1}}=y$. Since $\rho \in A$,

$$
\left(E^{\prime}\right)^{\alpha^{-1} \rho \alpha}=\left\{z, z s^{\prime \prime}, \ldots, z\left(s^{\prime \prime}\right)^{t-1}\right\}^{\rho} \in E\left(X^{\prime}\right),
$$

where $s^{\prime \prime}=\left(s^{\prime}\right)^{\alpha}$ and $y^{\alpha}=z$. With the similar argument $A^{\prime} \subseteq \alpha^{-1} A \alpha$ and so $\alpha A \alpha^{-1}=A^{\prime}$. Also it is easy to see that $\alpha^{-1} R(G) \alpha=R(G)$. Now X is normal, that is, $R(G) \triangleleft A$ if and only if $R(G)=\alpha^{-1} R(G) \alpha \triangleleft \alpha^{-1} A \alpha=$ A^{\prime}.

By considering the above proposition, the following result is obtained.
Proposition 2.2. Let G be a finite abelian group, and let S be a generating set of G not containing the identity 1_{G}. Assume S satisfies the condition s, $t, u, v \in S$ with

$$
\begin{equation*}
s t=u v \neq 1 \Rightarrow\{s, t\}=\{u, v\} . \tag{1}
\end{equation*}
$$

Then the t-Cayley hypergraph is normal.
We omit the easy proof of the following lemma.
Lemma 2.3. Let $G=G_{1} \times G_{2}$ be the direct product of two finite groups G_{1} and G_{2}, S_{1} and S_{2} subsets of G_{1} and G_{2}, respectively, and $S=S_{1} \cup S_{2}$ the disjoint union of S_{1} and S_{2}. Let $t, t^{\prime}, t^{\prime \prime}$ be integers where $t=\max \left\{t^{\prime}, t^{\prime \prime}\right\}$. Then
(i) $t-\operatorname{Cay}(G, S) \cong t^{\prime}-\operatorname{Cay}\left(G_{1}, S_{1}\right) \times t^{\prime \prime}-\operatorname{Cay}\left(G_{2}, S_{2}\right)$.
(ii) If t - $\operatorname{Cay}(G, S)$ is normal, then $t^{\prime}-\operatorname{Cay}\left(G_{1}, S_{1}\right)$ is also normal.
(iii) Ift $t^{\prime}-\operatorname{Cay}\left(G_{1}, S_{1}\right)$ and $t^{\prime \prime}-\operatorname{Cay}\left(G_{2}, S_{2}\right)$ are both normal and relatively prime, then t-Cay (G, S) is normal. From Lemma 2.3, we have the following.

Lemma 2.4. If $T \cap\langle J\rangle=1$ and J is independent, then $G=T \times \mathbb{Z}_{2}^{J}$ and $X=Y \times t-C a y(\langle J\rangle, J)$. Moreover, if Y is normal and relatively prime with K_{2}, then X is normal.

Now the conditions are ready to give a proof for the following theorem where is the main result of this paper.

Theorem 2.5. Let $X=t$-Cay (G, S) be a connected t - Cayley hypergraph of an abelian group G on S with the valency 3. Then X is normal except one of the following cases happens:

1. $X=2 n-\operatorname{Cay}\left(\mathbb{Z}_{2 n} \times \mathbb{Z}_{m}=\langle a\rangle \times\langle b\rangle,\left\{a, a^{n+1}, b\right\}\right)$, where $n>2, m>1$.
2. $X=n-C a y\left(\mathbb{Z}_{n} \times \mathbb{Z}_{2} \times \mathbb{Z}_{m}=\langle a\rangle \times\langle b\rangle \times\langle c\rangle,\{a, a b, c\}\right)$, where $n>2, m>1$.
3. $X=2 n-\operatorname{Cay}\left(\mathbb{Z}_{2 n}=\langle a\rangle,\left\{a, a^{n+1}, a^{n}\right\}\right)$, where $n>2$.
4. $X=n-\operatorname{Cay}\left(\mathbb{Z}_{n} \times \mathbb{Z}_{2}=\langle a\rangle \times\langle b\rangle,\{a, a b, b\}\right)$, where $n>2$.
5. $X=2 k-\operatorname{Cay}\left(\mathbb{Z}_{2 k} \times \mathbb{Z}_{2}=\langle a\rangle \times\langle b\rangle,\left\{a, a b, a^{k}\right\}\right)$, where $k>2$.
6. $X=2 k-\operatorname{Cay}\left(\mathbb{Z}_{2 k} \times \mathbb{Z}_{2}=\langle a\rangle \times\langle b\rangle,\left\{a, a b, a^{k} b\right\}\right)$, where $k>2$.
7. $X=4 n-\operatorname{Cay}\left(\mathbb{Z}_{4 n}=\langle a\rangle,\left\{a, a^{2 n+1}, a^{n+1}\right\}\right)$, where $n=4 k+1, k>0$.
8. $X=4 n-C a y\left(\mathbb{Z}_{4 n} \times \mathbb{Z}_{2}=\langle a\rangle \times\langle b\rangle,\left\{a, a^{2 n+1}, a^{n+1} b\right\}\right)$, where $n=2 k+1, k>0$.
9. $X=n-\operatorname{Cay}\left(\mathbb{Z}_{n} \times \mathbb{Z}_{4}=\langle a\rangle \times\langle b\rangle,\left\{a, a b^{2}, a b\right\}\right)$, where $n=4 k, k>0$.
10. $X=k-\operatorname{Cay}\left(\mathbb{Z}_{k} \times \mathbb{Z}_{t}=\langle a\rangle \times\langle b\rangle,\left\{a^{k / n h} b, a^{k / n h} b c, a^{k / m h} b^{-1}\right\}\right)$, where $c=\left(a^{k / n h} b\right)^{n h / 2}$.
11. $X=k-C a y\left(\mathbb{Z}_{k} \times \mathbb{Z}_{t} \times \mathbb{Z}_{2}=\langle a\rangle \times\langle b\rangle \times\langle c\rangle,\left\{a^{k / n h} b, a^{k / n h} b c, a^{k / m h} b^{-1}\right\}\right)$.

In cases (10) and (11), $k=\frac{m n h}{(m, n)}$ and $t=(m, n)$.

References

[1] Y.G. Baik, H.S. Sim, Y. Feng, M.Y. Xu, On the normality of Cayley graphs of abelian groups, Algebra Colloq. 5 (1998), 297-304.
[2] Y.G. Baik, Y. Feng, H.S. Sim, The normality of Cayley graphs of finite abelian groups with valency 5, System Sci. Math. Sci. 13 (2000), 425-431.
[3] M. Buratti, Cayley, Marty and Schreier Hypergraphs, Abh. Math. Sem. Univ. Hamburg 64 (1994), 151-162.
[4] C.D. Godsil, On the full automorphism group of a graph, Combinatorica 1 (1981) 243-256.
[5] J. Lee, Y.S. Kwon, Cayley hypergraphs and Cayley hypermaps, Discrete Math. 313 (2013), 540--549.
[6] S.C. Shee, On group hypergraphs, Southeast Asian Bull. Math. 14 (1990) 49-57.
[7] M.Y. Xu, Q. Zhang, J.X. Zhou, On the normality of directed Cayley graphs of abelian groups, System Sci. Math. Sci. 25 (2005), 700-710.
e-mail: r.bayat.tajvar@gmail.com

[^0]: ${ }^{1}$ speaker

