

On the Normality of t-Cayley Hypergraphs with Valency 3

Reza Bayat Tajvar¹

Faculty of Basic Science, Khatam-ol-Anbia (PBU) University, Tehran, Iran

Abstract

A t-Cayley hypergraph X = t-Cay(G, S) is called *normal* for a finite group G, if the right regular representation R(G) of G is normal in the full automorphism group Aut(X) of X. In this paper, we classify all normality of t-Cayley hypergraph, where G is a finite abelian group and |S| = 3.

Keywords: hypergraph, Cayley hypergraph, *t*-Cayley hypergraph AMS Mathematical Subject Classification [2010]: 13D45, 39B42

1 Introduction

A hypergraph X is a pair (V, E), where V is a finite nonempty set and E is a finite family of nonempty subsets of V. The elements of V are called hypervertices or simply vertices and the elements of E are called hyperedges or simply edges. Two vertices u and v are adjacent in hypergraph X=(V, E) if there is an edge $e \in E$ such that $u, v \in e$. If for two edges $e, f \in E$ holds $e \cap f \neq 0$, we say that e and f are adjacent. A vertex v and an edge e are incident if $v \in e$. We denote by X(v) the neighborhood of a vertex v, i.e. $X(v) = \{u \in V : \{u, v\} \in E\}$. Given $v \in V$, denote the number of edges incident with v by d(v); d(v)is called the degree of v. A hypergraph in which all vertices have the same degree d is said to be regular of degree d or d-regular. The size, or the cardinality, |e| of a hyperedge is the number of vertices in e. A hypergraph X=(V, E) is simple if no edge is contained in any other edge and $|e| \geq 2$ for all $e \in E$. A hypergraph is known as uniform or k-uniform if all the edges have cardinality k. Note that an ordinary graph with no isolated vertex is a 2-uniform hypergraph.

Let $X_1 = (V_1, E_1)$ and $X_2 = (V_2, E_2)$ be two hypergraphs. A homomorphism $\varphi : X_1 \to X_2$ is a map $\varphi : V_1 \to V_2$ that preserves adjacencies, that is, $\varphi(e) \in E_2$ for each $e \in E_1$. When φ is a bijection and its inverse map is also a homomorphism then φ is an *isomorphism* between the two hypergraphs and X_1 and X_2 are isomorphic.

An isomorphism from a hypergraph X onto itself is an *automorphism*. The *automorphism group* of X is denoted by Aut(X).

For a group G and a subset S of G such that $1_G \notin S$ and $S = S^{-1} := \{s^{-1} | s \in S\}$, the Cayley graph X = Cay(G, S) of G with respect to S is defined as the graph with vertex set V(X) = G, and edge set $E(X) = \{\{g, h\} | hg^{-1} \in S\}$.

 $^{^{1}}$ speaker

Obviously, the Cayley graph Cay(G, S) has valency |S|, and it easily follows that Cay(G, S) is connected if and only if $G = \langle S \rangle$, that is, S generates G. For a group G, denote R(G) as the right regular representation of G. Define $Aut(G, S) := \{ \alpha \in Aut(G) | S^{\alpha} = S \}$, acting naturally on G. Then, it is easy to see that each Cayley graph X = Cay(G, S) admits the group R(G).Aut(G, S) as a subgroup of automorphisms. Moreover (see [4]), $N_{Aut(X)}(R(G)) = R(G).Aut(G, S)$. Note that $R(G) \cong G$. So we can identify G with $R(G) \leq Aut(X)$ for X = Cay(G, S). The Cayley graph X = Cay(G, S) is called *normal* if G is normal in Aut(X). In this case Aut(X) = G.Aut(G, S).

Let G be a group and let S be a set of subsets $s_1, s_2, ..., s_n$ of $G - \{1_G\}$ such that $G = \langle \bigcup_{i=1}^n s_i \rangle$, that is, $\bigcup_{i=1}^n s_i$ generates G. A Cayley hypergraph CH(G, S) has vertex set G and edge set $\{\{g, gs\} | g \in G, s \in S\}$, where an edge $\{g, gs\}$ is the set $\{g\} \cup \{gx | x \in s\}$. For all $s \in S$, if |s| = 1, then the Cayley hypergraph is a Cayley graph. Therefore a Cayley hypergraph is a generalization of a Cayley graph [5]. Also, Lee and Kwon [5] proved that a hypergraph X is Cayley if and only if Aut(X) contains a subgroup which acts regularly on the vertex set of X.

In 1994, Buratti [3] introduced the concept of a t-Cayley hypergraph as follows. Let G be a finite group, S a subset of $G - \{1_G\}$ and t an integer satisfying $2 \le t \le \max\{o(s)|s \in S\}$. The t-Cayley hypergraph X = t-Cay(G, S) of G with respect to S is defined as the hypergraph with vertex set V(X) = G, and for $E \subseteq G$,

$$E \in E(X) \iff \exists g \in G, \exists s \in S : E(X) = \{gs^i | 0 \le i \le t-1\}.$$

Note that any 2-Cayley hypergraph is a Cayley graph and vice versa. For any $s_i \in S$, if $s_i = \{s, ..., s^{t-1}\}$ for some $s \in G - \{1_G\}$, then the Cayley hypergraph CH(G, S) is a t-Cayley hypergraph t - Cay(G, S). Hence a Cayley hypergraph is a generalization of a t-Cayley hypergraph. In fact every t-Cayley hypergraph is a subclass of the more general Cayley hypergraphs, or group hypergraphs which is defined by Shee in [6].

The concept of normality of the Cayley graph is known to be of fundamental importance for the study of arc transitive graphs. So, for a given finite group G, a natural problem is to determine all the normal or non-normal Cayley graph of G. Some meaningful results in this direction, especially for the undirected Cayley graphs, have been obtained. Baik et al. [1] determined all non-normal Cayley graphs of abelian groups of valency at most 4 and later [2] dealt with valency 5. For directed Cayley graphs, Xu et al. [7] determined all non-normal Cayley graphs of abelian groups of valency at most 3. In this paper, we classify all normality of t-Cayley hypergraph, where G is a finite abelian group and |S| = 3.

2 Main results

Proposition 2.1. Let G be a finite group, and let S be a generating set of G not containing the identity 1_G , and α an automorphism of G. Then t-Cayley hypergraph X = t-Cay(G, S) is normal if and only if X' = t-Cay (G, S^{α}) is normal.

Proof. Let A' = Aut(X'). It will be shown that (1) $\alpha^{-1}A\alpha = A'$, and (2) $\alpha^{-1}R(G)\alpha = R(G)$. For the first equation, we suppose that $\alpha^{-1}\rho\alpha \in \alpha^{-1}A\alpha$, where $\rho \in A$. Now if $E' \in E(X')$, then $E' = \{xs^i | 0 \le i \le t-1\}$ for some $x \in G$ and $s \in S$. Therefore

$$(E')^{\alpha^{-1}\rho\alpha} = \{ (xs^i)^{\alpha^{-1}\rho\alpha} | 0 \le i \le t-1 \}$$

= $\{ x^{\alpha^{-1}}, x^{\alpha^{-1}}(s)^{\alpha^{-1}}, ..., x^{\alpha^{-1}}(s^{t-1})^{\alpha^{-1}} \}^{\rho\alpha}.$

It follows that,

$$(E')^{\alpha^{-1}\rho\alpha} = \{y, ys', y(s')^2, \dots, y(s')^{t-1}\}^{\rho\alpha},\$$

where $s^{'} = s^{\alpha^{-1}}$ and $x^{\alpha^{-1}} = y$. Since $\rho \in A$,

$$(E')^{\alpha^{-1}\rho\alpha} = \{z, zs'', ..., z(s'')^{t-1}\}^{\rho} \in E(X'),$$

where $s'' = (s')^{\alpha}$ and $y^{\alpha} = z$. With the similar argument $A' \subseteq \alpha^{-1}A\alpha$ and so $\alpha A\alpha^{-1} = A'$. Also it is easy to see that $\alpha^{-1}R(G)\alpha = R(G)$. Now X is normal, that is, $R(G) \triangleleft A$ if and only if $R(G) = \alpha^{-1}R(G)\alpha \triangleleft \alpha^{-1}A\alpha = A'$.

By considering the above proposition, the following result is obtained.

Proposition 2.2. Let G be a finite abelian group, and let S be a generating set of G not containing the identity 1_G . Assume S satisfies the condition s, t, u, $v \in S$ with

$$st = uv \neq 1 \Rightarrow \{s, t\} = \{u, v\}. \tag{1}$$

Then the t-Cayley hypergraph is normal.

We omit the easy proof of the following lemma.

Lemma 2.3. Let $G = G_1 \times G_2$ be the direct product of two finite groups G_1 and G_2 , S_1 and S_2 subsets of G_1 and G_2 , respectively, and $S = S_1 \cup S_2$ the disjoint union of S_1 and S_2 . Let t, t', t'' be integers where $t=max\{t',t''\}$. Then

- (i) $t\text{-}Cay(G, S) \cong t'\text{-}Cay(G_1, S_1) \times t''\text{-}Cay(G_2, S_2).$
- (ii) If t-Cay(G, S) is normal, then t'-Cay (G_1, S_1) is also normal.
- (iii) If t'-Cay (G_1, S_1) and t''-Cay (G_2, S_2) are both normal and relatively prime, then t-Cay(G, S) is normal.

From Lemma 2.3, we have the following.

Lemma 2.4. If $T \cap \langle J \rangle = 1$ and J is independent, then $G = T \times \mathbb{Z}_2^J$ and $X = Y \times t$ -Cay $(\langle J \rangle, J)$. Moreover, if Y is normal and relatively prime with K_2 , then X is normal.

Now the conditions are ready to give a proof for the following theorem where is the main result of this paper.

Theorem 2.5. Let X = t-Cay(G, S) be a connected t- Cayley hypergraph of an abelian group G on S with the valency 3. Then X is normal except one of the following cases happens:

1.
$$X = 2n \cdot Cay(\mathbb{Z}_{2n} \times \mathbb{Z}_m = \langle a \rangle \times \langle b \rangle, \{a, a^{n+1}, b\}), \text{ where } n > 2, m > 1.$$

2.
$$X = n$$
- $Cay(\mathbb{Z}_n \times \mathbb{Z}_2 \times \mathbb{Z}_m = \langle a \rangle \times \langle b \rangle \times \langle c \rangle, \{a, ab, c\}), where n > 2, m > 1.$

$$\begin{aligned} 3. \ X &= 2n - Cay(\mathbb{Z}_{2n} = \langle a \rangle, \{a, a^{n+1}, a^n\}), \ where \ n > 2. \\ 4. \ X &= n - Cay(\mathbb{Z}_n \times \mathbb{Z}_2 = \langle a \rangle \times \langle b \rangle, \{a, ab, b\}), \ where \ n > 2. \\ 5. \ X &= 2k - Cay(\mathbb{Z}_{2k} \times \mathbb{Z}_2 = \langle a \rangle \times \langle b \rangle, \{a, ab, a^k\}), \ where \ k > 2. \\ 6. \ X &= 2k - Cay(\mathbb{Z}_{2k} \times \mathbb{Z}_2 = \langle a \rangle \times \langle b \rangle, \{a, ab, a^k\}), \ where \ k > 2. \\ 7. \ X &= 4n - Cay(\mathbb{Z}_{4n} = \langle a \rangle, \{a, a^{2n+1}, a^{n+1}\}), \ where \ n = 4k + 1, k > 0. \\ 8. \ X &= 4n - Cay(\mathbb{Z}_{4n} \times \mathbb{Z}_2 = \langle a \rangle \times \langle b \rangle, \{a, ab^2, ab\}), \ where \ n = 2k + 1, k > 0. \\ 9. \ X &= n - Cay(\mathbb{Z}_n \times \mathbb{Z}_4 = \langle a \rangle \times \langle b \rangle, \{a, ab^2, ab\}), \ where \ n = 4k, k > 0. \\ 10. \ X &= k - Cay(\mathbb{Z}_k \times \mathbb{Z}_t = \langle a \rangle \times \langle b \rangle, \{a^{k/nh}b, a^{k/nh}bc, a^{k/mh}b^{-1}\}), \ where \ c = (a^{k/nh}b)^{nh/2}. \end{aligned}$$

11. $X = k \cdot Cay(\mathbb{Z}_k \times \mathbb{Z}_t \times \mathbb{Z}_2 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle, \{a^{k/nh}b, a^{k/nh}bc, a^{k/mh}b^{-1}\}).$

In cases (10) and (11), $k = \frac{mnh}{(m,n)}$ and t = (m, n).

References

- Y.G. Baik, H.S. Sim, Y. Feng, M.Y. Xu, On the normality of Cayley graphs of abelian groups, *Algebra Colloq.* 5 (1998), 297–304.
- [2] Y.G. Baik, Y. Feng, H.S. Sim, The normality of Cayley graphs of finite abelian groups with valency 5, System Sci. Math. Sci. 13 (2000), 425–431.
- [3] M. Buratti, Cayley, Marty and Schreier Hypergraphs, Abh. Math. Sem. Univ. Hamburg 64 (1994), 151–162.
- [4] C.D. Godsil, On the full automorphism group of a graph, Combinatorica 1 (1981) 243–256.
- [5] J. Lee, Y.S. Kwon, Cayley hypergraphs and Cayley hypermaps, Discrete Math. 313 (2013), 540--549.
- [6] S.C. Shee, On group hypergraphs, Southeast Asian Bull. Math. 14 (1990) 49–57.
- [7] M.Y. Xu, Q. Zhang, J.X. Zhou, On the normality of directed Cayley graphs of abelian groups, System Sci. Math. Sci. 25 (2005), 700–710.

e-mail: r.bayat.tajvar@gmail.com