On resolvent signless Laplacian Estrada index of graphs

Ramin Nasiri ${ }^{1}$
Department of Mathematics, Faculty of Sciences, Imam Hossein Comprehensive University, Tehran, Iran
\section*{Ali Nakhaei Amroodi}
Department of Computer, network and communications, Imam Hossein Comprehensive University, Tehran, Iran

Abstract

For a simple non-complete graph G on n vertices, the resolvent signless Laplacian Estrada index of G is defined as $S L E E_{r}(G)=\sum_{i=1}^{n}\left(1-\frac{q_{i}}{2 n-2}\right)^{-1}$, where $q_{1} \geq q_{2} \geq \ldots \geq q_{n}$ are the eigenvalues of the signless Laplacian matrix of G. In this work, we introduce the extremal trees with respect to this consept, finally we establish some lower bounds for $S L E E_{r}$.

Keywords: resolvent signless Laplacian Estrada index, spectral moment, eigenvalues.

1 Introduction

For a simple graph G of order n, the adjacency matrix $\mathbf{A}=\left[a_{i j}\right]$ of G is the $n \times n$ matrix in which $a_{i j}=1$ if the vertices i and j are adjacent, and $a_{i j}=0$ otherwise. The matrix $\mathbf{Q}(G)=\mathbf{D}(G)+\mathbf{A}(G)$ is called the signless Laplacian matrix of G, where $\mathbf{D}(G)=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is the diagonal matrix of G. The set of all eigenvalues of $\mathbf{Q}(G)$ are denoted by $\mathbf{Q}-\operatorname{Spec}(G)=\left\{q_{1}, \ldots, q_{n}\right\}, q_{1} \geq q_{2} \geq \ldots \geq q_{n} \geq 0$.

It is well-known that $q_{1}=2 n-2$ if and only if G is a complete graph K_{n}. Hence, we have to consider non-complete graphs in definition of resolvent signless Laplacian Estrada index of G. The resolvent signless Laplacian Estrada index of G is defined as:

$$
\begin{equation*}
\operatorname{SLEE}_{r}(G)=\sum_{i=1}^{n}\left(1-\frac{q_{i}}{2 n-2}\right)^{-1} . \tag{1}
\end{equation*}
$$

One can see that we can write this quantity as:

$$
\begin{equation*}
S L E E_{r}(G)=\operatorname{tr}\left(\mathbf{I}-\frac{1}{2 n-2} \mathbf{Q}(G)\right)^{-1} . \tag{2}
\end{equation*}
$$

Notice that if $G \not \not K_{n}$, then for each $i=0,1, \ldots, n, q_{i}<2 n-2$, and therefore $0 \leq \frac{q_{i}}{2 n-2}<1$. Thus, we may use the Maclaurin series for $\left(1-\frac{q_{i}}{2 n-2}\right)^{-1}$ to evaluate $\operatorname{SLEE}_{r}(G)$. In an exact phrase,

$$
\begin{equation*}
\operatorname{SLEE}_{r}(G)=\sum_{k \geq 0} \frac{T_{k}(G)}{(2 n-2)^{k}}, \tag{3}
\end{equation*}
$$

[^0]where $T_{k}(G)$ denotes to the k-th signless Laplacian spectral moment of the graph G, i.e. $T_{k}(G)=\sum_{i=1}^{n} q_{i}^{k}$. It is well-known that $T_{k}(G)$ equals to the number of closed semi-edge walks of length k, see [?] and so for some small values of k, it is possible to evaluate $T_{k}(G)$ in terms of some graph parameters. For example, $T_{0}(G)=n, T_{1}(G)=2 m, T_{2}(G)=Z g_{1}(G)+2 m$ and $T_{3}(G)=6 t+3 Z g_{1}(G)+\sum_{v \in V(G)} d^{3}(v)$, where $Z g_{1}(G)$ and $Z g_{2}(G)$ are the first and second Zagreb indices of garph G.

2 Main results

In this section, some results for the resolvent signless Laplacian Estrada index are presented. Assume that G is a simple n-vetex graph with signless Laplacian eigenvalues $q_{1} \geq q_{2} \geq \ldots \geq q_{n}$. In the following Lemma, the resolvent signless Laplacian Estrada index is computed by the characteristic polynomial of \mathbf{Q}.

Lemma 2.1. Let G be a non-complete n-vertex graph. Then,

$$
S L E E_{r}(G)=(2 n-2) \frac{\Phi_{G}^{\prime}(2 n-2)}{\Phi_{G}(2 n-2)}
$$

where $\Phi_{G}(x)$ is the characteristic polynomial of the matrix \mathbf{Q}.
In the following, the quantity $S L E E_{r}$ for some trees are computed. We start by an example applicable in chemistry.

Example 2.2. Apply Lemma ??, we can calculate the resolvent signless Laplacian Estrada index of graphs by their \mathbf{Q}-polynomial. As an example, one can easily seen that $\Phi_{C H_{4}}(x)=x^{5}-8 x^{4}+18 x^{3}-16 x^{2}+5 x$ and $\Phi_{C_{2} H_{6}}(x)=x^{8}-14 x^{7}+73 x^{6}-182 x^{5}+244 x^{4}-182 x^{3}+73 x^{2}-14 x+1$, where $C H_{4}$ and $C_{2} H_{6}$, Figure 1 , are molecular graphs of the Methane and Ethane molecules, respectively.

C H_{4}

$C_{2} H_{6}$

Figure 1: Molecular graphs of Methane and Ethane
Hence, by Lemma ??,

$$
\begin{aligned}
S L E E_{r}\left(C H_{4}\right) & =\left.8 \cdot \frac{5 x^{4}-32 x^{3}+54 x^{2}-32 x+5}{x^{5}-8 x^{4}+18 x^{3}-16 x^{2}+5 x}\right|_{x=8} \simeq 7.09524 \\
S L E E_{r}\left(C_{2} H_{6}\right) & =\left.14 \cdot \frac{8 x^{7}-98 x^{6}+438 x^{5}-910 x^{4}+976 x^{3}-546 x^{2}+146 x-14}{x^{8}-14 x^{7}+73 x^{6}-182 x^{5}+244 x^{4}-182 x^{3}+73 x^{2}-14 x+1}\right|_{x=14} \\
& \simeq 9.37856 .
\end{aligned}
$$

Lemma 2.3. Let G be a graph and $e \in E(G)$. Then $\operatorname{SLEE}_{r}(G-e)<\operatorname{SLEE}_{r}(G)$.
Lemma 2.4. Let T be a tree on n vertices, also P_{n} and S_{n} are the path and star trees, respectively. Then

$$
\sum_{i=1}^{n} \frac{n-1}{n-2-\cos \left(\frac{\pi i}{n}\right)}=\operatorname{SLE} E_{r}\left(P_{n}\right) \leq \operatorname{SLE} E_{r}(T) \leq \operatorname{SLE} E_{r}\left(S_{n}\right)=\frac{2 n^{3}-4 n^{2}-n+4}{2 n^{2}-7 n+6},
$$

with left equality if and only if $T \cong P_{n}$ and right equality if and only if $T \cong S_{n}$.

Lemma 2.5. Let G be a non-complete graph on n vertices. Then,

$$
n=S L E E_{r}\left(\overline{K_{n}}\right) \leq \operatorname{SLE} E_{r}(G) \leq \operatorname{SLE} E_{r}\left(K_{n}-e\right) .
$$

Moreover, if G is a connected non-complete graph on n vertices, then

$$
\operatorname{SLEE}_{r}\left(P_{n}\right) \leq \operatorname{SLEE}_{r}(G) \leq \operatorname{SLEE} E_{r}\left(K_{n}-e\right) .
$$

Up to now, many lower and upper bounds for the largest and least signless Laplacian eigenvalues q_{1} and q_{n} were given. In [?, ?], bounds on the signless Laplacian spectral radius $q_{1}(G)$ in terms of n and m of a connected graph G are investigated as:

$$
\begin{equation*}
\frac{4 m}{n} \leq q_{1}(G) \leq \frac{2 m}{n-1}+n-2 \tag{4}
\end{equation*}
$$

and left equality holds if and only if G is a regular graph and right equality holds if and only if G is S_{n} or K_{n}. Also, for the least \mathbf{Q}-eigenvalue $q_{n}(G)$ are the following [?, ?]:

$$
\begin{equation*}
\frac{2 m}{n-2}-n+1 \leq q_{n}(G)<\delta . \tag{5}
\end{equation*}
$$

It is well known that the empty graph $\overline{K_{n}}$ is the unique graph with exactly one \mathbf{Q}-eigenvalue. Cvetkovic [?] proved that if G is a connected graph with r distinct signless Laplacian eigenvalues and diameter d, then $d \leq r-1$. On the other hand, we know that the complete graph K_{n} is the unique connected graph with diameter one. Therefore, we can deduce that the complete graph K_{n} is the unique connected graph with exactly two \mathbf{Q}-eigenvalues. In the following Lemma, connected graphs which have three distinct \mathbf{Q}-eigenvalues are characterized.

Lemma 2.6. [?] Let G be a connected graph of order $n \geq 4$. Then G has a Q-eigenvalue of multiplicity $n-2$ if and only if G is one of the graphs $K_{n}-e, S_{n}, K_{\frac{n}{2}, \frac{n}{2}}, \overline{K_{3}+S_{4}}$ or $\overline{K_{1}+2 K_{3}}$.

Example 2.7. In what follows, we compute the signless laplacian spectrum of graphs which are mentioned in the above lemma.

$$
\begin{array}{ll}
\mathbf{Q}-\operatorname{Spec}\left(K_{n}-e\right) & =\left\{\left[\frac{3 n-6 \pm \sqrt{n^{2}+4 n-12}}{2}\right]^{1},[n-2]^{n-2}\right\} \\
\mathbf{Q}-\operatorname{Spec}\left(S_{n}\right) & =\left\{[n]^{1},[1]^{n-2},[0]^{1}\right\} \\
\mathbf{Q}-\operatorname{Spec}\left(K_{\frac{n}{2}}, \frac{n}{2}\right) & =\left\{[n]^{1},\left[\frac{n}{2}\right]^{n-2},[0]^{1}\right\} \\
\mathbf{Q}-\operatorname{Spec}\left(\overline{K_{3}+S_{4}}\right) & =\left\{[9]^{1},[4]^{n-2},[1]^{1}\right\} ; n=7 \\
\mathbf{Q}-\operatorname{Spec}\left(\overline{K_{1}+2 K_{3}}\right) & =\left\{[9]^{1},[4]^{n-2},[1]^{1}\right\} ; n=7
\end{array}
$$

We are now ready to present some lower bounds for resolvent signless Laplacian Estrada index of graphs.
Lemma 2.8. Let G be a graph with n vertices and m edges, and let $I \subseteq\{1,2, \ldots, n\}$, then

$$
\operatorname{SLEE}_{r}(G) \geq \sum_{j \in I} \frac{2 n-2}{2 n-2-q_{j}}+\frac{(2 n-2)\left(n-n^{\prime}\right)^{2}}{(2 n-2)\left(n-n^{\prime}\right)-2 m+\sum_{j \in I} q_{j}}
$$

where $n^{\prime}=n(I)$, and equality holds if and only if $q_{i}=q_{j}$, for all $i, j \notin I$.

Theorem 2.9. Let G be a non-complete connected graph or empty graph with n vertices, m edges, maximum degree Δ, minimum degree δ and average degree \bar{d}. also let $1 \leq s<r \leq n$. Then,

$$
\left.\left.\begin{array}{l}
\text { (1). } \operatorname{SLEE}_{r}(G) \geq \frac{n^{2}(n-1)}{n(n-1)-m} \\
\text { (2). } S L E E_{r}(G) \geq \frac{n(n-1)}{n(n-1)-2 m}+\frac{n(n-1)^{3}}{n(n-1)^{2}+2 m-m n} \\
\text { (3). } S L E E_{r}(G) \geq \frac{2 n-2}{2 n-2-q_{2}}+\frac{2 n-2}{2 n-2-q_{s}}+\frac{(2 n-2)(n-2)^{2}}{(2 n-2)(n-2)-2 m+q_{r}+q_{s}} \\
\text { (4). } S L E E_{r}(G)
\end{array}\right) \frac{2 n-2}{2 n-2-2 \bar{d}}+\frac{2 n-2}{2 n-1-\bar{d}}+\frac{(2 n-2)(n-2)^{2}}{(2 n-2)(n-2)-2 m+n-2+2 \Delta}, ~(2 n-2)(n-2)^{2}\right)
$$

The equalities in parts (1) and (2) hold if and only if $G \cong \overline{K_{n}}$, and in (3) holds if and only if $G \cong \overline{K_{n}}$, $K_{n}-e, S_{n}, K_{\frac{n}{2}, \frac{n}{2}}, \overline{K_{3}+S_{4}}$ or $\overline{K_{1}+2 K_{3}}$.

Acknowledgement. We are very indebted to the referee for his/her suggestions and helpful remarks leaded us to rearrange the paper.

References

[1] F. Ayoobi, G. R. Omidi and B. Tayfeh-Rezaie, A note on graphs whose signless Laplacian has three distinct eigenvalues, Linear Multilinear Algebra 59 (6) (2011) 701-706.
[2] D. Cvetković, New theorems for signless Laplacians eigenvalues, Bull. Cl. Sci. Math. Nat. Sci. Math. 137 (33) (2008)
[3] D. Cvetković, P. Rowlinson and S. K. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (1) (2007) 155-171.
[4] D. Cvetković and S. K. Simić, Towards a spectral theory of graphs based on the signless Laplacian. III, Appl. Anal. Discrete Math. 4 (1) (2010) 156-166.
[5] K. Ch. Das, On conjectures involving second largest signless Laplacian eigenvalue of graphs, Linear Algebra Appl. 432 (11) (2010) 3018-3029.
[6] SG. Guo, YG. Chen and G. Yu, A lower bound on the least signless Laplacian eigenvalue of a graph, Linear Algebra Appl. 448 (2014) 217-221.

```
e-mail: rnasiri@ihu.ac.ir
e-mail: Kpnakhaei@ihu.ac.ir
```


[^0]: ${ }^{1}$ speaker

