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Abstract
For a simple non-complete graph G on n vertices, the resolvent signless Laplacian Estrada index of

G is defined as SLEEr(G) =
∑n

i=1

(
1− qi

2n−2

)−1

, where q1 ≥ q2 ≥ . . . ≥ qn are the eigenvalues of the
signless Laplacian matrix of G. In this work, we introduce the extremal trees with respect to this consept,
finally we establish some lower bounds for SLEEr.
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1 Introduction

For a simple graph G of order n, the adjacency matrix A = [aij ] of G is the n× n matrix in which aij = 1

if the vertices i and j are adjacent, and aij = 0 otherwise. The matrix Q(G) = D(G) +A(G) is called the
signless Laplacian matrix of G, where D(G) = diag(d1, d2, . . . , dn) is the diagonal matrix of G. The set of
all eigenvalues of Q(G) are denoted by Q−Spec(G) = {q1, . . . , qn}, q1 ≥ q2 ≥ . . . ≥ qn ≥ 0.

It is well-known that q1 = 2n− 2 if and only if G is a complete graph Kn. Hence, we have to consider
non-complete graphs in definition of resolvent signless Laplacian Estrada index of G. The resolvent signless
Laplacian Estrada index of G is defined as:

SLEEr(G) =

n∑
i=1

(
1− qi

2n− 2

)−1

. (1)

One can see that we can write this quantity as:

SLEEr(G) = tr

(
I− 1

2n− 2
Q(G)

)−1

. (2)

Notice that if G ̸∼= Kn, then for each i = 0, 1, . . . , n, qi < 2n− 2, and therefore 0 ≤ qi
2n−2 < 1. Thus, we may

use the Maclaurin series for (1− qi
2n−2)

−1 to evaluate SLEEr(G). In an exact phrase,

SLEEr(G) =
∑
k≥0

Tk(G)

(2n− 2)k
, (3)
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where Tk(G) denotes to the k−th signless Laplacian spectral moment of the graph G, i.e. Tk(G) =
∑n

i=1 q
k
i .

It is well-known that Tk(G) equals to the number of closed semi-edge walks of length k, see [?] and so for
some small values of k, it is possible to evaluate Tk(G) in terms of some graph parameters. For example,
T0(G) = n, T1(G) = 2m, T2(G) = Zg1(G)+2m and T3(G) = 6 t+3Zg1(G)+

∑
v∈V (G) d

3(v), where Zg1(G)

and Zg2(G) are the first and second Zagreb indices of garph G.

2 Main results

In this section, some results for the resolvent signless Laplacian Estrada index are presented. Assume that
G is a simple n-vetex graph with signless Laplacian eigenvalues q1 ≥ q2 ≥ . . . ≥ qn. In the following Lemma,
the resolvent signless Laplacian Estrada index is computed by the characteristic polynomial of Q.

Lemma 2.1. Let G be a non-complete n−vertex graph. Then,

SLEEr(G) = (2n− 2)
Φ

′
G(2n− 2)

ΦG(2n− 2)
,

where ΦG(x) is the characteristic polynomial of the matrix Q.

In the following, the quantity SLEEr for some trees are computed. We start by an example applicable
in chemistry.

Example 2.2. Apply Lemma ??, we can calculate the resolvent signless Laplacian Estrada index of graphs
by their Q−polynomial. As an example, one can easily seen that ΦCH4(x) = x5 − 8x4 + 18x3 − 16x2 + 5x

and ΦC2H6(x) = x8 − 14x7 +73x6 − 182x5 +244x4 − 182x3 +73x2 − 14x+1, where CH4 and C2H6, Figure
1, are molecular graphs of the Methane and Ethane molecules, respectively.

C H4 C2H6

Figure 1: Molecular graphs of Methane and Ethane

Hence, by Lemma ??,

SLEEr(CH4) = 8.
5x4 − 32x3 + 54x2 − 32x+ 5

x5 − 8x4 + 18x3 − 16x2 + 5x

∣∣∣
x=8

≃ 7.09524

SLEEr(C2H6) = 14.
8x7 − 98x6 + 438x5 − 910x4 + 976x3 − 546x2 + 146x− 14

x8 − 14x7 + 73x6 − 182x5 + 244x4 − 182x3 + 73x2 − 14x+ 1

∣∣∣
x=14

≃ 9.37856.

Lemma 2.3. Let G be a graph and e ∈ E(G). Then SLEEr(G− e) < SLEEr(G).

Lemma 2.4. Let T be a tree on n vertices, also Pn and Sn are the path and star trees, respectively. Then
n∑

i=1

n− 1

n− 2− cos(πin )
= SLEEr(Pn) ≤ SLEEr(T ) ≤ SLEEr(Sn) =

2n3 − 4n2 − n+ 4

2n2 − 7n+ 6
,

with left equality if and only if T ∼= Pn and right equality if and only if T ∼= Sn.
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Lemma 2.5. Let G be a non-complete graph on n vertices. Then,

n = SLEEr(Kn) ≤ SLEEr(G) ≤ SLEEr(Kn − e).

Moreover, if G is a connected non-complete graph on n vertices, then

SLEEr(Pn) ≤ SLEEr(G) ≤ SLEEr(Kn − e).

Up to now, many lower and upper bounds for the largest and least signless Laplacian eigenvalues q1 and
qn were given. In [?, ?], bounds on the signless Laplacian spectral radius q1(G) in terms of n and m of a
connected graph G are investigated as:

4m

n
≤ q1(G) ≤ 2m

n− 1
+ n− 2 (4)

and left equality holds if and only if G is a regular graph and right equality holds if and only if G is Sn or
Kn. Also, for the least Q−eigenvalue qn(G) are the following [?, ?]:

2m

n− 2
− n+ 1 ≤ qn(G) < δ. (5)

It is well known that the empty graph Kn is the unique graph with exactly one Q−eigenvalue. Cvetković
[?] proved that if G is a connected graph with r distinct signless Laplacian eigenvalues and diameter d,
then d ≤ r − 1. On the other hand, we know that the complete graph Kn is the unique connected graph
with diameter one. Therefore, we can deduce that the complete graph Kn is the unique connected graph
with exactly two Q−eigenvalues. In the following Lemma, connected graphs which have three distinct
Q−eigenvalues are characterized.

Lemma 2.6. [?] Let G be a connected graph of order n ≥ 4. Then G has a Q-eigenvalue of multiplicity
n− 2 if and only if G is one of the graphs Kn − e, Sn, Kn

2
,n
2
, K3 + S4 or K1 + 2K3.

Example 2.7. In what follows, we compute the signless laplacian spectrum of graphs which are mentioned
in the above lemma.

Q−Spec(Kn − e) =
{
[
3n− 6±

√
n2 + 4n− 12

2
]1, [n− 2]n−2

}
Q−Spec(Sn) = {[n]1, [1]n−2, [0]1}

Q−Spec(Kn
2
,n
2
) = {[n]1, [n

2
]n−2, [0]1}

Q−Spec(K3 + S4) = {[9]1, [4]n−2, [1]1} ;n = 7

Q−Spec(K1 + 2K3) = {[9]1, [4]n−2, [1]1} ;n = 7

We are now ready to present some lower bounds for resolvent signless Laplacian Estrada index of graphs.

Lemma 2.8. Let G be a graph with n vertices and m edges, and let I ⊆ {1, 2, . . . , n}, then

SLEEr(G) ≥
∑
j∈I

2n− 2

2n− 2− qj
+

(2n− 2)(n− n′)2

(2n− 2)(n− n′)− 2m+
∑

j∈I qj

where n′ = n(I), and equality holds if and only if qi = qj, for all i, j /∈ I.
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Theorem 2.9. Let G be a non-complete connected graph or empty graph with n vertices, m edges, maximum
degree ∆, minimum degree δ and average degree d. also let 1 ≤ s < r ≤ n. Then,

(1). SLEEr(G) ≥ n2 (n− 1)

n (n− 1)−m

(2). SLEEr(G) ≥ n (n− 1)

n (n− 1)− 2m
+

n (n− 1)3

n (n− 1)2 + 2m−mn

(3). SLEEr(G) ≥ 2n− 2

2n− 2− q2
+

2n− 2

2n− 2− qs
+

(2n− 2) (n− 2)2

(2n− 2)(n− 2)− 2m+ qr + qs

(4). SLEEr(G) >
2n− 2

2n− 2− 2 d
+

2n− 2

2n− 1− d
+

(2n− 2) (n− 2)2

(2n− 2) (n− 2)− 2m+ n− 2 + 2∆

≥ 2n− 2

2n− 2− 2 δ
+

2n− 2

2n− 1− δ
+

(2n− 2) (n− 2)2

(2n− 2) (n− 2)− 2m+ n− 2 + 2∆

The equalities in parts (1) and (2) hold if and only if G ∼= Kn, and in (3) holds if and only if G ∼= Kn,
Kn − e, Sn, Kn

2
,n
2
, K3 + S4 or K1 + 2K3.
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