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ABSTRACT 

In the rapidly evolving landscape of software development, ensuring the security and 

confidentiality of Java code has emerged as a paramount concern. As the digital realm continues to grow 

in complexity, so do the threats that target sensitive data and intellectual property. In this context, Java 

DataFlow Obfuscation stands as a formidable line of defense, harnessing the combined power of ANTLR4 

and Python to fortify the security of your Java codebase. 

The essay unfolds in distinct phases, commencing with extracting entities and their properties, 

coupled with subtle code alterations. The renaming process follows, entailing entity encryption, data type 

transformation, and identifier modifications. The encryption phase comprises the encryption of all entities, 

data type adjustments, and dynamic parsing upon usage. 

The final output is a codebase where entities bear modified identifiers and commodities with 

primitive data types are encrypted, stringified, and parsed when required. This comprehensive obfuscation 

strategy enhances code security, and baffles reverse engineering attempts. 

In related works, notable contributions in data obfuscation and security are examined, shedding 

light on the significance of data type manipulation, matrix splitting, and component shuffling within code 

security.  

The conclusion anticipates future directions, envisioning the integration of diverse encryption and 

decryption algorithms, enhanced compatibility with Java versions and libraries, and optimizations in 

runtime. These prospects aim to bolster code security further, setting the stage for seamless transitions into 

code flow obfuscation and abstract interpretation, marking the following milestones in safeguarding Java 

code. 

 

KEYWORDS: DataFlow Obfuscation, Java Code Security, Entity Encryption, ANTLR4, Data 

Type Manipulation 

  

1 INTRODUCTION 

Ensuring the security and confidentiality of code has perpetually remained a paramount concern 

for programmers and major corporations. In response to this critical need, we delve into the intricate world 

of Java [1] DataFlow Obfuscation, leveraging the power of sophisticated tools like ANTLR4 [2] and 

encryption to fortify code security.  
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At its core, 'DataFlow' in computer programming governs how data, such as variables, objects, and 

information, moves within a software system. It influences not just the execution order of statements 

(control flow) but also how data values are produced and consumed by different parts of the code (data 

dependency). This concept is vital for ensuring software reliability, efficiency, and security, particularly in 

languages like Java. 

This essay introduces Java DataFlow Obfuscation, a method enhancing code security through 

systematic code transformations, modified identifiers, and encryption, fortifying defense against reverse 

engineering and unauthorized access. 

ANTLR4, a robust parsing tool, is the engine behind the extraction and parsing of Java code. It 

allows for precisely identifying entities, data types, and their interconnections. Additionally, encryption 

techniques are employed to secure sensitive data within the codebase. 

In the following sections, we will explore Java DataFlow Obfuscation comprehensively, examining 

its relevance, intricacies, and real-world applications. The aim is to not only shed light on the importance 

of dataflow, ANTLR4, obfuscation, and encryption but also to provide a detailed understanding of the 

methodologies employed to enhance code security in the ever-evolving field of software development. 

 

2 RELATED WORKS 

D.I.George Amalarethinam et al. [3] proposed a new and better way for Data Security Enhancement 

in Public Cloud Storage using Data Obfuscation and Steganography to protect the data in cloud storage. 

They use MRADO to classically obfuscate (e.g., substitution, redaction or nulling, shuffling, and blurring) 

the data. After that, they use Pixel Processing using Least Significant Bit (LSB) to hide the data in cover 

images. 

Khaled M. Khan et al. [4] Research focusing on ensuring confidentiality in cloud computing 

through the innovative methods of matrix splitting, component shuffling, and the incorporation of random 

noise into matrices is a noteworthy contribution within the field. Exploring related studies in several key 

areas is imperative to contextualize this work. Firstly, examining the broader landscape of confidentiality 

in cloud computing elucidates the challenges and existing solutions. Moreover, a detailed investigation of 

matrix splitting techniques, component shuffling methodologies, and the addition of random noise to 

matrices is crucial to appreciate the intricacies of these techniques. 

Hsiang-Yang Chen et al. [5] As a defense against reverse engineering, introduced this method and 

designed a changing data type obfuscation method in Java software. They mainly change the variable type 

from short-term to long-term and long-term to short-term. They do this by connecting two short-term to get 

a long-term or splitting a long-term into two short-term variables. 

Shenoda Guirguis et al. [6] turned standard obfuscation into real-time obfuscations because they 

must be fast and secure while transmitting data in banking transactions. The data in use is more vulnerable 

than the data at rest. They did it by utilizing different obfuscation functions for different data types to 

securely obfuscate the data, for example, by Anonymization. 

D.I. George Amalarethinam et al. [7] conducted a comparative analysis of obfuscation techniques, 

namely WMRADO, MRADO, and MONcrypt. Their research culminated in the proposal of the WMRADO 

technique, which stands out by employing word-by-word obfuscation as opposed to the line-by-line 

approach used in MRADO. Furthermore, it is essential to note that when users entrust their data to cloud 

services, it exposes vulnerabilities not only to attacks on data in transit but also to attacks on data at rest. 

 

3 THE APPROACH 

Using ANTLR4 in conjunction with the Java language grammar obtained from the ANTLR 

grammar GitHub repository [8], we embark on a multi-step process. Our first step involves generating a 
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Parser, Lexer, and ParserListener, enabling us to extract a semantic representation from raw Java code in 

text form. To initiate the parsing process, we employ ANTLR's Lexer to tokenize the Java code, which has 

already been converted into a stream. 

Following the successful tokenization, our next pivotal phase commences, entailing the utilization 

of ANTLR's provided parser. This parser is instrumental in constructing the Java code's Abstract Syntax 

Tree (AST). Access to the AST is established through the "Compilation Unit" node defined by ANTLR. 

The subsequent stage involves a comprehensive traversal of the AST. At this juncture, the core 

operations of extraction, encryption, and renaming are executed, demonstrating the profound implications 

of data flow obfuscation. 

 

 

 

 

 

 

 

 

 

 

 

Having gained access to the Abstract Syntax Tree (AST) derived from the Java code, we are 

presented with a tree structure that follows the following organization: 

1. Compilation Unit: This serves as the primary and foremost unit of the AST, encompassing 

several essential components, including the package declaration, import declaration, type declaration, and 

EOF (End of File). In the context of ANTLR, this unit is pivotal in structuring generated code for parsing 

and language recognition. 

 

 

 

2. Package Declaration: A package declaration is pivotal in organizing related classes and interfaces 

within the Java code. In ANTLR, it serves as a structural element for generating code that facilitates parsing 

and the recognition of language constructs. 

Figure 1. Initial steps before parsing 

Figure 2. Compilation Unit rule diagram 
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3. Import Declaration: Import declarations, in the context of Java, enable the inclusion of classes 

or packages from other namespaces into the code. Within ANTLR, these declarations facilitate the 

incorporation of grammar rules or Lexer tokens from other ANTLR grammars, enriching the capabilities 

of the language recognition process. 

 

4. Type Declaration: Type declarations define classes, interfaces, or custom data types in the Java 

language. Within the domain of ANTLR, these declarations are responsible for specifying Lexer and parser 

rules, enabling the recognition of language constructs, and contributing to the overall functionality of the 

parsing process. 

 

 

Subsequently, our process involves a triple-pass parsing of the code, where we systematically 

undertake the tasks of extraction, renaming, and encryption. Throughout this process, each rule or unit is 

obtained from the ParserListener, such as CompilationUnit, TypeDeclaration, MemberDeclaration, 

Variable or Method Declarations, etc.is equipped with an enter and exit function. These functions serve as 

boundaries, signifying the commencement and conclusion of each specific rule. Furthermore, they provide 

a context ctx 1 for every rule within the ParserListener, each with a distinct context, such as 

IdentifierContext, StatementContext, ExpressionContext, and more. These rules follow a hierarchical 

structure, enabling the systematic and precise manipulation of the code. 

 

It's important to note that for each file within any input project, a token stream is created, and all 

modifications and code transformations will be carried out within this token stream in the upcoming phases 

 
1 ANTLR "ctx" refers to the context object used to track and manipulate parse tree nodes in the ANTLR 

parser generator. 

Figure 3. Example 1: a grammar rule derived from ANTLR parser 

Figure 4. Example 2: a grammar rule derived from ANTLR parser 

Figure 5. AST representation derived from the extracted grammar rules obtained  from ANTLR parser 
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of our obfuscation process. This token stream serves as the basis for reading and subsequent modification 

of the code within the file and, as a structured representation of lexical elements, becomes the focal point 

for systematic alterations and enhancements. 

 

3.1 Noise generation 

Within our project, we introduce the notion of "noise-code" as a fusion of random variables and 

corresponding methods meticulously designed to obscure the visual characteristics and underlying intent 

of code from external observers. Our methodology unfolds in two fundamental steps: 

 

3.1.1.  Establishing the Noise-Code Network 

This critical phase is orchestrated through the creation of a "Generator" object. The Generator is 

entrusted with the task of generating random noise-code while systematically categorizing its elements by 

type and establishing connections between them. The uniqueness of each instance of noise-code is achieved 

through a deliberate reliance on randomness. The fundamental components of noise-code include: 

Noise-Var: These simulated variables are akin to actual variables but possess randomly generated 

names and types. Importantly, these types must belong to a predefined list of accepted primitives (e.g., 

Integer, String, Char, Boolean). The number of Noise-Vars is also randomized, resulting in a unique set for 

each file. 

Noise-Method: To inject a layer of meaningful functionality into Noise-Vars, we leverage a curated 

repository of pre-made Java methods known as the "FuncBank". This repository contains methods designed 

to match every pair combination of accepted Noise-Var types, allowing us to randomly select a method for 

a pair of Noise-Vars. The addition of more methods to FuncBank contributes to the unpredictability of the 

resultant Noise-Code. 

 These Noise-Methods represent an essential bridge between the abstracted Noise-Vars and the 

actual code, providing a layer of meaning and functionality within the generated Noise-Code. However, it's 

not enough for these Noise-Methods to exist as static definitions; they need to actively participate in the 

code's execution. 

To achieve this, our Generator dynamically generates method calls for each Noise-Method and 

inserts them into the list of Noise-Vars, ensuring that every Noise-Method is invoked during the program's 

execution.  

These code snippets represent our program's original code, carefully crafted to maintain its 

functionality intact while serving our obfuscation objectives. 

 

3.1.2.  Insertion 

Our insertion process is guided by a set of algorithms aimed at seamlessly integrating Noise-Code 

into the existing codebase without easy detection. This approach hinges on dividing the output from our 

Generator object into multiple groups, each adhering to a crucial rule: The necessary input Noise-Vars for 

a Noise-Method are always declared and initialized before the method call. The remaining variables in each 

group are then filled with unused Noise-Vars. Each group is strategically placed within the codebase, 

ensuring that their inclusion does not lead to syntax errors or raise suspicions. 
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Moreover, our insertion process goes a step further by strategically placing each group within the 

existing codebase. This placement is a result of a meticulous analysis of the original code, which enables 

us to identify optimal positions where our Noise-Code blends seamlessly with the surroundings. 

This intelligent design choice not only enhances the authenticity of our obfuscated code but also 

significantly raises the complexity of reverse engineering attempts. When an observer encounters the Noise-

Code, they are met with a structure that follows established coding conventions, reinforcing the illusion of 

functionality and purpose. 

 

3.2  Extraction  

 This process is defined as a tool that revolves around the generation of a comprehensive table that 

encompasses a wide collection of declared entities2, ranging from variables and methods to classes, 

interfaces, ENUMs, and more, all of which may necessitate subsequent modification. Within this table, we 

meticulously observe and catalog their attributes, collecting all pertinent information that holds the potential 

for future modifications. This systematic approach serves as the cornerstone of our obfuscation strategy by 

allowing us to implement obfuscation techniques with precision and accuracy. 

The structure of this table is elegantly simple. Each row within it represents an individual entity, 

while each column corresponds to a specific property of that entity. We gather this data during the parsing 

process facilitated by our Extractor class, an instance of the JavaParserListener3 class provided by ANTLR.  

 

 

 

 

 

 

 

 

Table 1. Extracted data table from the code provided in figure 6  

 

 
2 In ANTLR, an 'entity' typically refers to a named element in the grammar, representing a distinct rule or 

token. 
3 In ANTLR, a 'JavaParserListener' is a listener interface generated for a parser, providing methods to 

react to events during the parsing of a Java source file. 

Name Value FileName Line type VarOrReturnTyp

e 

TestClass - TestClass.java 3 ClassDeclaration TestClass 

main - TestClass.java 4 MethodDeclaration void 

testStr “test” TestClass.java 6 VariableDeclaration String 

testInt 1 TestClass.java 7 VariableDeclaration int 

Figure 6. Example Java code as an input of Extraction process 
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The information captured in this table serves as a valuable resource, offering 

utility and, at times, a necessary toolkit tailored to the unique requirements of our 

project. We acquire this information through a two-step process: 

 

3.2.1  Capturing the identifiers  

 In this step, we leverage the 'enter identifier' method, which captures identifiers following the 

identifier rule context 4provided by ANTLR. The context within the 'enterIdentifier' method equips us with 

essential data for constructing the data scheme to be inserted into our table. The primary data extracted 

from the identifier context includes the identifier's name, the file it's located in, the line number, and its 

grammatical rule, referred to as its "type" hereafter. It's important to note that our table includes only 

identifiers representing accepted types of declarations, excluding calls and primary uses. One of the table's 

vital columns is 'VarOrReturnType,' which returns different values based on the identifier's type. For 

variable-like types such as class fields, it returns their normal type, while for methods, it returns their return 

type. 

 Following this data extraction, we proceed with some minor code and table modifications. The 

table modifications involve refining the entities according to our predefined policy to ensure that only 

entities to be modified are captured. Additionally, we generate random names paired with the identifier 

names for later use in the renaming steps.  

 

3.2.2  Resolve the needed data for the table 

Following the previous step, we progress to complete our data scheme for each individual identifier. 

This is achieved by leveraging the exit function for each specific targeted rule and the hierarchical structure 

provided by the JavaParserListener in ANTLR4. The hierarchical structure corresponds to the Java 

language grammar, where each rule can encompass multiple rules within itself. The parserListener's walk 

method traverses these rules, utilizing specific events such as "enterParentRule," "enterChildRule," 

"exitChildRule," and "exitParentRule." 

 

In the illustration presented in Figure 7, you can observe that the identifier rule is a basic rule 

without any nested rules. This characteristic is crucial to our process. After initially capturing the essential 

data of the identifier during the "enterIdentifier" event, we proceed to acquire the remaining properties of 

the identifier within the "exit" method of its corresponding rule. This data includes vital information for our 

program, such as "varOrReturnType," which indicates whether the identifier represents a variable or a class, 

and its inheritance status, particularly when it's related to a class. With this essential data at our disposal, 

we can seamlessly proceed with the renaming phase of the obfuscation process. 

 

 

 

 

 
4 in ANTLR refers to the contextual object associated with a parsing rule, holding crucial information 

about the current parsing state. 



 

731 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3  Renaming 

Renaming stands as one of the pivotal pillars of dataflow obfuscation, substantially diminishing 

readability and severing the semantic link between variable names, their assigned values, and their intended 

purposes. The renaming step emerges as a conceptual core within our obfuscation process, replete with its 

own unique challenges and a general solution. We outline a selection of the main challenges we encounter, 

including: 

1. Ensuring precise pairing of the identifier with the correct entity from our table 

2. Implementing distinct renaming mechanisms for both identifiers and typeIdentifiers (including 

classes, ENUMs, interfaces, and records) 

3. Adhering to our established renaming policy while exercising discretion to avoid changes in 

unnecessary identifiers 

4. Resolving the complexities of identifier ownership 

We address these challenges through the following steps: 

 

3.3.1 Capturing all the identifiers and resolving the identifier ownership problem  

In this step, similar to our initial extraction step in progress 3.2.1, we employ the 'enterIdentifier' 

rule. However, the key distinction lies in the broader scope, where we extend beyond the declaration step 

to capture all identifiers and their references, including calls and callbys. Despite this expansion, we 

implement a refining mechanism to avoid renaming unnecessary identifiers. Additionally, we utilize the 

'enterTypeIdentifier' to gather all typeIdentifiers, encompassing classes, interfaces, enums, and more. Due 

Figure 7. The hierarchical structure derived from the Java code by the grammar 
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to the chain renaming effect, we establish a separate renaming convention for type identifiers. It's 

noteworthy that in the process of renaming type identifiers, we also adjust their file names to align with the 

newly edited names. 

 There is another crucial aspect that requires thorough consideration, namely, addressing the 

identifier ownership problem. This problem arises due to the extensive range of possibilities resulting from 

the programmers' freedom of action, potentially leading us astray in all identifier-based processes. Even in 

the simplest codes, two identifiers can bear the same name while having entirely different origins and 

functionalities. To tackle this issue, we have introduced an additional criterion for each identifier: Member 

access. 

 This criterion acts as a background check for our identifiers, identifying the membership between 

those connected to each other by a ".", interacting with the fields, methods, and instances of other classes, 

creating a chained connection between them. It allows us to determine the context in which each identifier 

belongs and verify whether it aligns with the entities we intend to modify in our obfuscation process.To 

calculate these relationships, we've developed a specialized method that implements a recursive algorithm. 

The algorithm operates by selecting pairs of members with an overlap from the left side, returning the 

corresponding entity for the second element in the pair. In the next iteration, it takes the next two and queries 

the second element's corresponding entity given the acquired entity of the first element. This process 

continues until the most right member entity is resolved. With access to the corresponding entity for each 

individual identifier gathered earlier, we continue our process into the casting phase. 

 

3.3.2 Casting the identifiers   

In the renaming process, casting identifiers is a critical and primary stage. Although we have 

corresponding entities for every identifier, careful filtering and selection are necessary. Before initiating 

any modifications, we adhere to our selection policy to avoid renaming unwanted identifiers, such as those 

belonging to the 'System' class. Additionally,  We maintain a list of pre-made method names from original 

Java classes, such as 'System,' 'Integer,' 'String,' and others. These names are carefully curated in a "should-

ignore" list. Any identifiers categorized as methodDeclaration with names found in this list are intentionally 

excluded from the renaming process. This strategic exclusion is aimed at preventing potential issues and 

complications that could arise from altering these identifiers. 

We continue by mapping the identifier to the corresponding entity in the table. For instance, a 

methodCall identifier should correspond to a methodDeclaration or interfaceCommonBodyDeclaration 

entity. We then conduct due diligence to ensure that both the identifier and the entity are situated within the 

same file and that the declaration precedes the variable section in terms of usage. In the event that these 

criteria are not met, we delve into potential inheritance relationships. With the establishment of type and 

ownership relations, the renaming process can confidently move forward. 

Upon identifying a suitable entity from the table for a given identifier, the subsequent step involves 

changing the name of the identifier to the new designation assigned to the entity. This new name is 

systematically generated during the extraction process. It is paramount to observe that this generated name 

strictly adheres to Java's standardized naming conventions, notably commencing with a capital letter. This 

adherence ensures that our renaming mechanism effectively accommodates typeIdentifiers with the 

necessary modification of import statements. 

As we advance in our endeavor to fortify data protection, the integration of complex and randomly 

generated identifiers introduces an additional stratum of security to our obfuscation technique. 
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3.4 Encryption 

Data encryption is an essential security measure that involves transforming information or data into 

an illegible, encrypted format using cryptographic algorithms. It ensures confidentiality and security during 

transmission and storage, adding substantial depth to our obfuscation approach. This process unfolds in 

three consecutive stages: 

 

3.4.1 Identifying encryption-required data types 

Our primary focus centers on variable declarations, initialization, and assignments involving 

accepted primitive values such as Strings, integers, floats, and other similar data types. Within our query, a 

pivotal rule that guides our process is the literal rule. We meticulously employ the 'enterLiteral' rule to 

identify and isolate all literals within the codebase. Following this identification, we apply a series of 

predefined filters to ensure that these literals align seamlessly with our overarching obfuscation strategy. 

This approach allows us to systematically transform the code elements in a manner that enhances the 

security and obfuscation of the software. 

 

3.4.2  Performing the act of encryption  

We initiate the encryption process using a custom PyCipher class, which leverages standard 

symmetric encryption algorithms and the Python cryptography library. Each input is transformed into 

ciphertext, accompanied by two additional outputs: a hexadecimal Key representation and an Initialization 

Vector (IV); these details are recorded and available for subsequent stages in format of Python dictionary. 

We have established precise policies in this regard, which are categorized into two main subgroups: 

 

3.4.2.1  Initial encryption 

In this policy, we employ the pre-compile encryption method, focusing on literals and all values 

associated with variable declarations. These values are ideal targets as they are typically hard-coded or 

predefined by the programmer. Consequently, we use our PyCipher class to encrypt these selected literals. 

Once we have isolated and encrypted the remaining literalContexts based on our criteria, we handle 

the literals connected to variable declarations differently. In this scenario, we opt for a top-to-bottom 

traversal approach, 

 

 

 

 

3.4.2.2 Final encryption 

In contrast to our previous policy, we employ the In-compile encryption method, tailored to encrypt 

all value types involved in computation-intensive processes. It's important to note that in this scenario, we 

cannot instantly encrypt these values as we typically do because they haven't been calculated at this stage. 

However, we have addressed this challenge, which will be detailed in the Decryption and Parsing 3.4.3 

section. 

This comprehensive encryption approach covers every expression. However, it presents unique 

challenges, mainly when dealing with elements like member access and the variable initializer rule. Our 

primary focus is on assignments and equations.  

A significant aspect of this process is the encryption of the right side of assignment statements. 

This step is pivotal in transforming complex assignments involving multiple variables and literals into a 

single encrypted entity value. To illustrate, an assignment statement might take "x = y + 'abc'" where the ' 

Figure 8. Traversing through grammar rules: top-to-bottom 
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sign indicates an encrypted entity and "xyz" represents an encrypted literal. The result is z’,  a singular 

encrypted value stored in memory.  

 

 

 

To maintain equality in type or return value on both sides of equality operators, we often need to 

convert the type or return value of the right side of the equation to match the left side. Encoding is employed 

as necessary to  

achieve this equilibrium. It is important to note that comparing two encrypted values directly is not feasible 

because the encryption process yields a unique output each time, even with the same inputs. Therefore, 

comparisons are made by decrypting both values, enabling meaningful comparisons.  

The outcome of both encryption stages invariably yields data in a String format. Consequently, we 

have strategically adopted the practice of systematically converting all Declarator Ids of variables into 

String representations. While this approach might appear unconventional, it is a deliberately intelligent 

choice in our obfuscation strategy. It is designed to challenge and perplex any viewer who attempts to 

understand the code. 

By converting Declarator IDs into encrypted String values, we create a visual enigma that conceals 

the original meaning, thus increasing the complexity of the code. This intelligently crafted step introduces 

a considerable level of ambiguity into the code, making it exceptionally hard for any viewer to discern the 

original intent or functionality of the variables. In essence, it transforms the code into an intricate puzzle 

that only those privy to our decryption process can decipher. 

This method is a testament to our commitment to enhancing code security while maintaining code 

readability for those with the proper access and decryption capabilities. By strategically obscuring the 

Declarator IDs in this manner, we've introduced an additional layer of complexity, rendering the code 

impervious to easy comprehension and analysis, thus bolstering the effectiveness of our obfuscation 

technique. 

 

3.4.3 Decryption and Parsing  

The encryption process, as a crucial component of our obfuscation technique, inevitably transforms 

the variables and assignments into a form that may seem chaotic and unreadable. To strike a balance 

between security and practicality, we've implemented a decryption strategy. This strategy dictates that at 

key moments, such as during assignments, statements, and other relevant operations, every piece of 

encrypted data, which may appear initially illegible, undergoes decryption. In essence, this means that 

whenever encrypted data is employed, it is seamlessly transformed into its original, meaningful form from 

our program's perspective, while appearing vague to the viewer. To achieve this goal, we need to take two 

essential steps: 

 

3.4.3.1  Creating the Necessary Java Classes for Decode/Encode Functionality 

The necessity of in-compile encryption and decryption leads us to create a single Java file for each 

input project (one for the entire project, not for each file). This Java file serves as the foundation like our 

Figure 9 
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Figure 10. Example output of Encryption phase 

PyCipher class and resembles a hashmap named “encryptionDataMap“ that is a transformed version of our 

encryption data from the PyCipher’s dictionary. This Java class offers two crucial methods that we 

consistently utilize in this phase: 

Encode: 

Mirrors our PyCipher class, using the Javax Cipher library to perform encryption. Following the 

successful execution of its mission, this method appends the standard data to our encryptionDataMap. 

Decode: 

 For each input cipherText queries in encryptionDataMap to find the exact IV and key for the given 

text and then by using cryptographic algorithms converts it to it’s original form 

This class will be systematically imported based on the project's packaging within all files to preempt any 

potential import errors. 

It's crucial to emphasize that the outputs of both these methods are consistently in the format of a string. 

This unique characteristic necessitates an additional step in our process, where we must carefully parse 

these variables back into their original types. This parsing operation ensures that the variables behave 

correctly within their intended usage, preserving the functionality of the code while maintaining the highest 

level of obfuscation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.3.2 Making the Final Output 

In the final step of our obfuscation process, we take the output produced by the 

TokenStreamRewriter mentioned before for each file and create and save the new file. The new file's name 

is designed to match the modified class name.  
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Figure 11. Original Input Code 

To ensure this, we meticulously crafted the new files, giving them the appropriate names and 

incorporating the modified content based on the packaging notation we extracted from the original files. 

This step ensures that the resulting codebase adheres to the necessary naming conventions and structural 

organization, culminating in creating the obfuscated and functionally intact Java project.  

The orchestration of our four fundamental phases—Noise generation, extraction, renaming, and 

encryption—unfolds seamlessly across various walks and parses of our Java code. This dynamic approach 

not only optimizes the efficiency of our obfuscation process but also facilitates concurrent execution of 

these phases. The parallelism inherent in their implementation enhances the overall synergy, ensuring a 

harmonized and intricate transformation of the codebase. This strategic concurrency aligns with our 

commitment to delivering a sophisticated and efficient obfuscation framework. 

4 Analysis 

In our analysis phase, we aimed to assess the efficiency and performance of our obfuscation technique. To 

conduct this evaluation, we utilized a diverse set of projects, primarily consisting of educational and 

university Object-Oriented Programming (OOP) Java projects.  Our analysis focused on three key aspects: 

runtime evaluation, functionality comparison, and the similarity rate between the original and obfuscated 

code. This similarity rate was computed using The Levenshtein Distance algorithm. 

To illustrate our obfuscation technique, we provide a simple example here. Below is an embedded code 

example that demonstrates the generation of the Fibonacci sequence, using 'n' as an input parameter 

defaulted to 10, along with its corresponding obfuscated version. 
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Now, the generation of our analysis table for these codes is outlined as follows: 

 

Table 2. Analysis of the output code provided in Figure 12 

 

However, for a more in-depth exploration, you can follow this link: 

http://wp.kntu.ac.ir/m.alaeiyan/Projects/Obfuscation/Data/index.html 

 

This comprehensive analysis enables us to gauge the impact of our obfuscation on runtime performance, 

verify the retained functionality of the obfuscated projects, and assess the degree of similarity between the 

original and obfuscated code. A multifaceted evaluation is crucial to ensuring the effectiveness and 

reliability of our obfuscation technique in real-world scenarios. 

 

5 Conclusion 

Throughout this study, our primary focus has been on the obfuscation of entities, explicitly 

addressing their names, values, and, significantly, their data types. Our obfuscation process unfolds 

through distinct phases:  

First, incorporating our sophisticated Noise generation process for heightened security, we initiate 

the extraction of entities and their associated properties, carefully minimizing code alterations. This 

includes capturing essential information such as variable names, data types, and their hierarchical 

relationships within the code structure. Following this, we proceed to the renaming process, where 

identifier adjustments take place. Finally, the encryption phase encompasses the encryption of all 

remaining entities, the transformation of their data types, and their parsing when utilized. 

As a result, our obfuscator yields a final output: an enigmatic code where every entity features 

modified identifiers. Additionally, all entities with primitive data types are encrypted, converted into 

Version Runtime (s) Similarity rate Output (for N = 10) Correctness of output 

obfuscated + 0.23 s 9.38 % “0 1 1 2 3 5 8 13 21 34” True 

http://wp.kntu.ac.ir/m.alaeiyan/Projects/Obfuscation/Data/index.html
http://wp.kntu.ac.ir/m.alaeiyan/Projects/Obfuscation/Data/index.html
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strings, and dynamically parsed when employed. This comprehensive obfuscation strategy not only 

safeguards the integrity of the code but also enhances its security and confounds attempts at reverse 

engineering. 

 

6 Future Work 

Our ongoing research endeavors in code obfuscation hold promising possibilities for the future. 

We propose developing various encryption and decryption algorithms tailored to different data types to 

enhance the obfuscation process further. This diversification will enable us to accommodate a broader 

range of Java versions and libraries, ensuring compatibility with evolving technologies. 

Efforts are also underway to optimize the runtime of the code obfuscation process. Our goal is to 

make it more efficient while expanding its capabilities. Future enhancements include introducing distinct 

renaming and encrypting styles for entities with identical identifiers. Additionally, we aim to support 

back-to-back obfuscations on the same codebase, further fortifying its security. With these advancements, 

our obfuscator will be well-prepared to seamlessly transition into the subsequent phases of CodeFlow 

obfuscation, abstract interpretation, and soundness theory. This holistic approach will offer a 

comprehensive and robust solution for safeguarding code integrity and security in the ever-evolving 

software development landscape.  
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