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 ABSTRACT 

A numerical method for solving a class of fractional optimal control problems (FOCPs) is presented. 

First, the FOCP is transformed into an equivalent variational problem, then using Lagrange polynomials, 

the problem is reduced to the problem of solving a system of algebraic equations. With the aid of an 

operational matrix of fractional integration, Gauss quadrature formula and Newton’s iterative method for 

solving a system of algebraic equations, the problem is solved approximately. Approximate solutions are 

derived by the method satisfy all the initial conditions of the problem. Finally some illustrative examples 

are included to demonstrate the applicability of the present technique. 
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1 INTRODUCTION 

In the last four decades, it has been shown that the dynamic behavior of many physical systems can 

be described more accurately with a fractional order model than an integer order one. The modeling of 

many phenomenon leads to a set of fractional differential equations. Also fractional order dynamics 

appear in some problems in science and engineering such as, viscoelasticity, bioengineering, etc.  When 

the fractional differential equations are used in conjunction with the performance index and a set of initial 

conditions, they lead to fractional optimal control problems. Thus, during the last decades many 

numerical techniques have been developed in this field. The existing numerical methods to solve these 

problems include Legendre multiwavelet collocation method (Yousefi et al., 2011), method based on 

Bernoulli polynomials (Keshavarz et al. 2015), Boubaker polynomials (Rabiei et al., 2017), etc. 

2 PRELIMINARIES AND NOTATIONS 

DEFINITION 2.1.  Let 𝑥 ∶  [𝑎, 𝑏]  →  𝑅 be a function, 𝛼 > 0 a real number and 𝑛 =  ⌈𝛼⌉, where ⌈𝛼⌉ 
denotes the smallest integer greater than or equal to 𝛼, the Riemann-Liouville integral of fractional order 

is defined as (Sabermahani et al. 2018) 

𝐼𝛼𝑥(𝑡) =  
1

Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1𝑥(𝜏)𝑑𝜏,

𝑡

0

 

For the Riemann-Liouville fractional integrals, we have 

 

𝐼𝛼𝑡𝑛 = 
Γ(𝑛 + 1)

Γ(𝑛 + 1 − 𝛼)
𝑡𝛼+𝑛,   𝑛 > −1,              (1) 
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(𝐷𝛼𝐼𝛼𝑥)(𝑡) =  𝑥(𝑡), 
 

(𝐼𝛼𝐷𝛼𝑥)(𝑡) = 𝑥(𝑡) − ∑ 𝑥(𝑖)(0)
𝑡𝑖

𝑖!

⌈𝛼⌉−1

𝑖=0

. 

𝐷𝛼 denotes fractional derivative in Caputo sense which is present in (Sabermahani et al. 2018). 

 

2.1 Lagrange polynomials 

Let the set of nodes be given by 𝑡𝑖 ∈  [0, 1], 𝑖 =  0, 1, … , 𝑛. Lagrange polynomial based on these 

points can be defined as follows 

 

𝐿𝑖(𝑡) =  ∏
(𝑡 − 𝑡𝑗)

(𝑡𝑖 − 𝑡𝑗)

𝑛

𝑗=0
𝑖≠𝑗

. 

 

Lemma 1. Let 𝐿𝑖(𝑡), 𝑖 = 0, 1, … , 𝑛 are the Lagrange polynomials on the set of nodes 𝑡𝑖 ∈  [0, 1]. 
Lagrange polynomials in these points are described by (Sabermahani et al. 2018) 

𝐿𝑖(𝑡) =  ∑𝛽𝑖𝑠𝑡
𝑛−𝑠, 𝑖 = 0, 1, … , 𝑛

𝑛

𝑠=0

,             (2) 

where 

 

𝛽𝑖0 = 
1

∏ (𝑡𝑖 − 𝑡𝑗)
𝑛
𝑗=0
𝑖≠𝑗

 

𝛽𝑖𝑠 = 
(−1)𝑠

∏ (𝑡𝑖 − 𝑡𝑗)
𝑛
𝑗=0
𝑖≠𝑗

 ∑ … ∑ ∏𝑡𝑘𝑟

𝑠

𝑟=1

,    𝑠 = 1, 2, … , 𝑛,         𝑖 ≠ 𝑘1 ≠ ⋯ ≠ 𝑘𝑠.

𝑛−𝑠+1

𝑘1=0

𝑛

𝑘𝑠=𝑘𝑠−1+1

 

3 FUNCTION APPROXIMATION 

Suppose that  𝑓 ∈ 𝐿2[0, 1] can be expanded in term of the Lagrange polynomials as 

𝑓(𝑡) =  ∑𝑐𝑖𝐿𝑖(𝑡)

∞

𝑖=0

,  

We can consider the following truncated series for f 

𝑓(𝑡) ≃  ∑𝑐𝑖𝐿𝑖(𝑡) =  𝐶𝑇𝐿(𝑡),                                                                                    (3) 

𝑛

𝑖=0

 

where 𝐶, 𝐿(𝑡) are 1 × (𝑛 + 1) vectors given by 

 

𝐶 = [𝑐0, 𝑐1, … , 𝑐𝑛]𝑇 ,         𝐿(𝑡) = [𝐿0(𝑡), 𝐿1(𝑡), … , 𝐿𝑛(𝑡)]𝑇 .                                               (4)   
 

We can derive unknown vector 𝐶, as 

 

𝐶 =  𝐷−1⟨𝑓, 𝐿⟩,         𝐷 =  ⟨𝐿(𝑡), 𝐿(𝑡)⟩ 
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4 OPERATIONAL MATRIX OF RIEMANN–LIOUVILLE FRACTIONAL  INTEGRATION 

 

Let 𝐿(𝑡) be Lagrange polynomials vector defined in Eq. (4), then 

 

 

𝐼𝛼𝐿(𝑡) =  𝐹(𝛼)𝐿(𝑡), 
 

where F(α) is (n +  1)  × (n +  1) operational of fractional integration of order  in the Riemann-

Liouville sense. Using Remark 1 and the properties of the operator Iα, for i =  0, 1, … , n, we have 

 

𝐼𝛼𝐿𝑖(𝑡) = 𝐼𝛼  (∑𝛽𝑖𝑠𝑡
𝑛−𝑠

𝑛

𝑠=0

) =   ∑𝛽𝑖𝑠𝐼
𝛼  𝑡𝑛−𝑠

𝑛

𝑠=0

= ∑𝑤𝑖,𝑠 𝑡
𝑛−𝑠+𝛼

𝑛

𝑠=0

,           (5)       

 

𝑤𝑖,𝑠 = 
Γ(𝑛 − 𝑠 + 1)

Γ(𝑛 − 𝑠 + 1 − 𝛼)
𝛽𝑖𝑠.   

 

Now, we can expand  tn−s+α in terms of Lagrange polynomials as: 

 

 tn−s+α ≃ ∑𝑐𝑠,𝑗𝐿𝑗(𝑡),                    𝑐𝑠,𝑗 = 
⟨ tn−s+α, 𝐿𝑗(𝑡)⟩

⟨𝐿𝑗(𝑡), 𝐿𝑗(𝑡)⟩
,

𝑛

𝑗=0

 

 

and substitute in Eq. (5), we get 

 

𝐼𝛼𝐿𝑖(𝑡) =  ∑𝑤𝑖,𝑠 ∑𝑐𝑠,𝑗𝐿𝑗(𝑡) = ∑(∑ 

𝑛

𝑠=0

𝑐𝑠,𝑗𝑤𝑖,𝑠)𝐿𝑗(𝑡) = ∑∑ 

𝑛

𝑠=0

𝜃𝑖,𝑗,𝑠𝐿𝑗(𝑡),

𝑛

𝑗=0

  

𝑛

𝑗=0

         

𝑛

𝑗=0

𝑛

𝑠=0

     𝜃𝑖,𝑗,𝑠 = 𝑐𝑠,𝑗𝑤𝑖,𝑠 . 

 

We obtain  

𝐹(𝛼) = 

[
 
 
 
 
 
 
 
 
 ∑  

𝑛

𝑠=0

𝜃0,0,𝑠 ∑ 

𝑛

𝑠=0

𝜃0,1,𝑠 … ∑ 

𝑛

𝑠=0

𝜃0,𝑛,𝑠

∑ 

𝑛

𝑠=0

𝜃1,0,𝑠 ∑ 

𝑛

𝑠=0

𝜃1,1,𝑠 … ∑ 

𝑛

𝑠=0

𝜃1,𝑛,𝑠

⋮

∑ 

𝑛

𝑠=0

𝜃𝑛,0,𝑠

⋮

∑ 

𝑛

𝑠=0

𝜃𝑛,1,𝑠

⋱
…

⋮

∑ 

𝑛

𝑠=0

𝜃𝑛,𝑛,𝑠
]
 
 
 
 
 
 
 
 
 

. 

 

5 NUMERICAL METHOD 

In this study, we focus on the following fractional optimal control problems. 

min 𝐽(𝑢) =  ∫ 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡))𝑑𝑡,
1

0

               (6)      

subject to 

 

𝐷𝛼𝑥(𝑡) = 𝑔(𝑡, 𝑥(𝑡)) + 𝑏(𝑡)𝑢(𝑡),        𝑚 − 1 < 𝛼 ≤ 𝑚 ,                          (7) 
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with initial conditions 

 

𝑥(0) =  𝑥0, 𝑥′(0) = 𝑥1, … , 𝑥⌈𝛼⌉−1(0) = 𝑥⌈𝛼⌉−1 ,  

 

where 𝑓, 𝑔 and 𝑏 ≠  0 are smooth functions of their arguments. Now, we solve the optimization problem 

(6, 7) via Lagrange polynomials approximation where 𝑡𝑖 =
𝑖

𝑛
, 𝑖 = 0, 1, … , 𝑛 are nodes in [0, 1]. First, we 

approximate Dαx(t) as 

 

𝐷𝛼𝑥(𝑡) ≃ 𝐶𝑇𝐿(𝑡),     
 

Using operational matrix of fractional integration and property of  Riemann-Liouville of integration, we 

have 

 

𝑥(𝑡) = 𝐶𝑇𝐹(𝛼)𝐿(𝑡) + ∑ 𝑥𝑖

𝑡𝑖

𝑖!

⌈𝛼⌉−1

𝑖=0

,     

and 

 

∑ xi

ti

i!

⌈α⌉−1

i=0

 ≃ ATL(t),  

 

then, we have  

 

 

𝑥(𝑡) = 𝐶𝑇𝐹(𝛼)𝐿(𝑡) + 𝐴𝑇𝐿(𝑡). 
 

 

Also, using Eq. (7) and above discussion, we have 

 

𝑢(𝑡) =
1

𝑏(𝑡)
(𝐷𝛼𝑥(𝑡) − 𝑔(𝑡, 𝑥(𝑡))) =

1

𝑏(𝑡)
(𝐶𝑇𝐿(𝑡) + 𝑔(𝑡, 𝐶𝑇𝐹(𝛼)𝐿(𝑡) + ∑ 𝑥𝑖

𝑡𝑖

𝑖!

⌈𝛼⌉−1

𝑖=0

)).      (8)    

Then, the following optimization problem is given 

 

min       𝐽(𝑢) =  ∫ 𝑓 (𝑡, 𝐶𝑇𝐹(𝛼)𝐿(𝑡) + ∑ 𝑥𝑖
𝑡𝑖

𝑖!

⌈𝛼⌉−1
𝑖=0 ,

1

𝑏(𝑡)
(𝐶𝑇𝐿(𝑡) + 𝑔(𝑡, 𝐶𝑇𝐹(𝛼)𝐿(𝑡) +

1

0

 ∑ 𝑥𝑖
𝑡𝑖

𝑖!

⌈𝛼⌉−1
𝑖=0 ))) 𝑑𝑡.        (9) 

 

 

According to differential calculus, we have the following necessary conditions of optimization  

 

𝜕𝐽

𝜕𝑐𝑖
= 0,      𝑖 = 0, 1, … , 𝑛.                                                               (10) 

 

We solve the system (10), using Newton's iterative method. 

System (9) is to some extent complex in view of calculations. In order to simplify calculations, we can 

solve numerically by Gauss–Legendre integration method. 
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6 NUMERICAL RESULTS 

In this section, we apply the method presented in this paper to solve the following test examples. 

 

Example 1: Assume that we wish to minimize the functional 

 

 

𝐽(𝑢) =  ∫ (0.625 𝑥2(𝑡) + 0.5 𝑥(𝑡)𝑢(𝑡) + 0.5 𝑢2(𝑡))𝑑𝑡,
1

0

 

where 

 

𝐷𝛼𝑥(𝑡) = 0.5 𝑥(𝑡) + 𝑢(𝑡),      𝑡 ∈ [0, 1], 0 <  𝛼 ≤ 1, 
 

and the condition 𝑥(0) = 1. The exact solution for α = 1, is J = 0.3807971, and the exact value of 

control variable is 

 

u(t) =  
−(tanh(1 − t) + 0.5)cosh (1 − t)

cosh (1)
. 

 
 Here, we solve this problem by using the present method with n = 3. We present the results for different 

values of 𝛼, in Table 1 and see that as approaches to 1, the numerical values of 𝐽 converge to the objective 

value of 𝛼 = 1. Also, Fig. 1 shows the curves for the exact values of control variable and the numerical 

values of 𝑢(𝑡) and 𝑥(𝑡) for different values of 𝛼. This problem is solved in (El-Kady, 2003) for 𝛼 = 1, 

with Chebyshev finite difference method for 𝑛 =  7, with the Boubaker polynomials in (Rabiei et al. 

2017) for 𝑛 =  5 and the result for these n, are as accurate as our values for 𝑛 =  3. 

 
Table 1: Numerical values of J for different values of 𝛼, in Example .1 

𝛼 0.5 0.8 0.9 0.99 1 

𝐽 0.309498 0.352314 0.366704 0.379407 0.380797 

 

 

  
Figure 1: Curves of the exact and numerical values of 𝑥(𝑡) and 𝑢(𝑡) different values of α, in Example 1. 
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Example 2: Consider the following time invariant problem 

 

𝐽(𝑢) =
1

2
∫ (𝑥2(𝑡) + 𝑢2(𝑡))𝑑𝑡,

1

0

                                        (11) 

subject to the system dynamics 

 
𝐷𝛼𝑥(𝑡) = − 𝑥(𝑡) + 𝑢(𝑡),      𝑡 ∈ [0, 1], 0 <  𝛼 ≤ 1, 

and 𝑥(0) = 1. 

The problem is to find the control u(t), which minimizes the quadratic performance index Eq. (11). For 

this problem, the exact solution in the case of α = 1 is given by J=0.1929092980932, 

 

𝑥(𝑡) =  𝑐𝑜𝑠ℎ(√2𝑡) + 𝑤𝑠𝑖𝑛ℎ(√2𝑡),    𝑢(𝑡) = (1 + √2𝑤) cosh(√2𝑡) + (√2 + 𝑤) sinh(√2𝑡) , 
 

where 

 

𝑤 = − 
cosh(√2) + √2 sinh(√2)

√2 cosh(√2) + sinh(√2)
. 

 

From above equations, we apply our method. Table 2 shows the comparison between the approximation 

of 𝐽 obtained using proposed method and Bessel collocation method (Tohidi et al. 2015) for α = 1 and 

different values of m. 

 

  
Figure 2: Curves of exact and numerical values of x(t) and u(t) for various of α , in Example 2. 

 

 
Table 2: Values of J with α = 1, for Example 2. 

n Present method Bessel Collocation Method 

4 0.1929092982257 0.1929041515 

5 0.1929092980929 0.1929065847 

 

7 CONCLUSION 

In this article, a new method for solving a class of fractional optimal control problems is introduced. 

First the given problem is transformed into an equivalent variational problem, then the variational 
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problem is solved approximately by utilizing the Lagrange polynomials, operational matrix of Riemann–

Liouville fractional integration, Gauss quadrature formula and Newton’s iterative formula for solving the 

system of equations. Several illustrative test examples are included to demonstrate the validity and 

applicability of the new technique. 
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