
 

748 

 

Convergence in Soft Topological Spaces 

 
Hanan Ali Hussein1, Sattar Hameed Hamzah2, Habeeb Kareem Abdullah3 

        

"*1Department of Mathematics, College of Education for Girls, Al-Kufa University, Iraq" 
"2Department of Mathematics, College of Education, Al-Qadisiyah University, Iraq" 

"3Department of Mathematics, College of Education for Girls, Al-Kufa University, Iraq" 

 

 

*1Corresponding Author: E-mail: hanana.hussein@uokufa.edu.iq 

 

Abstract 

         "The main purpose of this work is to introduce soft convergence in soft topological space, we 

introduced two types of soft convergence in soft topological space namely, soft convergence (S-

convergence) of soft net and soft convergence of soft filter. Also, we investigate some properties of 

those concepts. 
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1. Introduction 

          "The concept of convergence is one of the most concepts in analysis, there is more than one way 

to convergence theories used in topology which leads to the same results. One of based on the notion 

of a net in 1922 due to Moor and Smith [3]. In 1955, Bartle R.G [1] introduced nets and filters in 

topology. Varol, BP. and Aygun, H. [7] presented soft space and introduced some modern notations 

such as convergence of sequences. Ridvan Sahin, Ahmet Kucuk [4] presented soft filters and their 

convergence properties. In this work we introduce two types of soft convergence net and soft 

convergence filter in soft topological space, we also introduce the concepts of S-compact space, S-

convergence (S-cluster) of nets, also we introduce some properties of the S-proper function by 

notations of S-exceptional set. In this work, soft topological spaces (𝐾, 𝐸̂, Γ̀) denotes (sts) which no 

separation axioms are assumed unless otherwise mentioned". 

 

2. Notations and Basic Definitions 

     This section contained the basic definitions, propositions that are needed through this work. 

 

Definition (2.1)[2] 

"Let (𝐾, 𝐸̂, Γ̀) be "a soft topological space" over K, a soft set (𝐺, 𝐸̂) over K is called soft neighborhood  

of the soft set (𝐹, 𝐸̂) if there is a soft open set (H, 𝐸̂) such that (𝐹, 𝐸̂) ⊆̃ (𝐻, 𝐸̂) ⊆̃ (𝐺, 𝐸̂). If (𝐹, 𝐸̂) =

𝑥𝔢, then (𝐺, 𝐸̂) is "called a soft neighborhood" of 𝑥 𝔢". 

The soft neighborhood system of a soft element 𝑥𝔢 denoted by 𝒩𝑠(𝑥𝔢). 

 

Definition (2.2)[5]  

"Let (𝐾, 𝐸̂, Γ̀) be "a soft topological space", and let (𝐹, 𝐸̂)  be a soft set over  𝐾, then the soft closure of 

(𝐹, 𝐸̂)  which denoted by 𝑐𝑙(𝐹, 𝐸̂)  is the soft set, defined by 𝑐𝑙(𝐹, 𝐸̂) =∩̃ {(𝐺, 𝐸̂): (𝐺, 𝐸̂) is soft 

closed and (𝐹, 𝐸̂) ⊆̃ (𝐺, 𝐸̂)}". 

 

Proposition (2.3)[6]  

1) A soft point 𝑥𝔢 ∈̃ 𝑐𝑙(𝐹, 𝐸̂) iff for all soft open set (𝐺, 𝐸̂) over 𝐾contain 𝑥𝔢, (𝐹, 𝐸̂) ∩̃ (𝐺, 𝐸̂) ≠ ∅̃. 
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2) A soft set (𝐹, 𝐸̂) is closed iff (𝐹, 𝐸̂) = 𝑐𝑙(𝐹, 𝐸̂). 

 

 

Definition (2.4) [2] 

"Let (𝐾, 𝐸̂, Γ̀) be a "soft topological spaces", and let (𝐹, 𝐸̂)  be a soft set over  𝐾, a soft point 𝑥𝔢 in 𝐾 is 

called a soft adherent point of (𝐹, 𝐸̂) if (𝐹, 𝐸̂) ∩̃ (𝐺, 𝐸̂) ≠ ∅̃, for all (𝐺, 𝐸̂) ∈̃ 𝒩𝑠(𝑥𝔢)." 

 

Definition (2.5)[2]  

"Let (𝐾, 𝐸̂, Γ̀), (ℳ, 𝐸̂, Γ̀̀)  be "soft topological spaces", a function ℎ: 𝐾 → ℳ is called soft continuous at  

𝑥𝔢 ∈̃ 𝐾̃ if for all soft open set (𝐹, 𝐸̂) containing ℎ(𝑥𝔢), there is a soft  open set (𝐺, 𝐸̂)  containing  

𝑥𝔢 such that ℎ((𝐺, 𝐸̂)) ⊆̃ (𝐹, 𝐸̂)". 

 
Definitions (2.6)[2] 

 A "soft topological space" (𝐾, 𝐸̂, Γ̀),  is called: 

i) 𝑆𝑇1- space if for each 𝑥𝔢, 𝓎𝔢 ∈̃ 𝐾̃ such that 𝑥𝔢 ≠ 𝓎𝔢, there are soft open sets (𝐹, 𝐸̂), (𝐺, 𝐸̂) such that 

𝑥𝔢 ∈̃ (𝐹, 𝐸̂), 𝓎𝔢 ∉̃ (𝐹, 𝐸̂)  and 𝑥𝔢 ∉̃ (𝐺, 𝐸̂), 𝓎𝔢 ∈̃ (𝐺, 𝐸̂). 

𝑖𝑖) 𝑆𝑇2- space if for each 𝑥𝔢, 𝓎𝔢 ∈̃ 𝐾̃ such that 𝑥𝔢 ≠ 𝓎𝔢, there are soft open sets (𝐹, 𝐸̂), (𝐺, 𝐸̂)such 

that 𝑥𝔢 ∈̃ (𝐹, 𝐸̂), 𝓎𝔢 ∈̃ (𝐺, 𝐸̂) and (𝐹, 𝐸̂) ∩̃ (𝐺, 𝐸̂) = ∅̃. 

 

Definition (2.7)[2]  

"A family Ω of soft sets is a cover of a soft set (𝐹, 𝐸̂) if (𝐹, 𝐸̂) ⊆̃∪̃ (𝐺𝑖 , 𝐸̂) ∈̃ Ω, 𝑖 ∈ 𝐼}. It is a soft open 

cover if all members of    is a soft open set. A sub cover of   is a subfamily of   which is also a 

cover". 

 

Definition (2.8)[2]  

"A "soft topological space" (𝐾, 𝐸̂, Γ̀) is called "soft compact space" if every soft open cover of 𝐾̃ has a 

finite sub cover". 

 

Definition (2.9)[2]  

"A soft subspace (ℳ, 𝐸̂, Γℳ) of a soft topological space (𝐾, 𝐸̂, Γ̀), is a soft compact iff every cover of 

ℳ̃ by soft open sets in K contains a finite sub cover". 

 

Theorem (2.10)[2]  

(i) Every soft closed subset of a soft compact space is soft compact. 

(ii) Every "soft compact subspace" of 𝑆𝑇2 −space is soft closed. 

(iii) "Soft continuous image of soft compact space is soft compact". 

 

Definition (2.11)[2]   

A function ℎ: (𝐾, 𝐸̂, Γ̀) → (ℳ, 𝐸̂, Γ̀)̀  is called: 

1) Soft closed function if ℎ((𝐹, 𝐸̂)) is soft closed set over ℳ for every soft closed set (𝐹, 𝐸̂)  over K. 

2) Soft compact function if ℎ−1((𝐹, 𝐸̂))  is soft compact set over K for all soft compact set (𝐹, 𝐸̂) 

over ℳ. 

3) Soft proper function if : 

i) ℎ "is soft continuous function". 

ii) The function ℎ × 𝑖𝑍: 𝐾 × 𝑍 → ℳ × 𝑍 "is soft continuous function for all soft space Z". 
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Proposition (2.12)[2] 

A function ℎ: 𝐾 → ℳ is soft proper if: 

i) ℎ is soft continuous function 

ii) ℎ "is soft closed function 

iii) ℎ−1({𝓎𝔢}) is soft compact for each 𝓎𝔢 ∈̃ ℳ̃. 

 
3. Soft convergence of soft net  

 "In this section, we introduced the basic definitions, theorems and remarks about  " soft convergence 

of sot net, and we give some results about them".  

 

Definition (3.1)[2]  

"Let 𝛫 be an ordinary set, and 𝑆𝑃 be the set of each soft point in 𝐾. The function  𝜂̃: 𝐷 → 𝑆𝑃 is 

called a soft net (S-net) in 𝐾 and is denoted by {𝜂𝑑
𝑒𝑑}𝑑∈𝐷where D is a direct set". 

 

Definition (3.2)[2]  

A S-net {𝛾ℎ
𝑒ℎ}ℎ∈𝐻 in 𝐾 is named a soft subnet of a S-net {𝜂𝑑

𝑒𝑑}𝑑∈𝐷  in 𝐾  iff there is a function ψ: 𝐻 →
𝐷such that: 

1) 𝛾̃ = 𝜂̃ ∘ 𝜓, i.e for all 𝑖 ∈ 𝐻, 𝛾𝑖 = 𝜂(𝜓(𝑖)). 

2)  for all 𝑑 ∈ 𝐷, there is ℎ ∈ 𝐻 such that, if 𝑝 ∈ 𝐻, 𝑝 ≤ ℎ, 𝜓(𝑝) ≤ 𝑑. 

 

Definition (3.3)[2]  

"Let {𝜂𝑑
𝑒𝑑}𝑑∈𝐷 be a S-net in a soft topological space (𝐾, 𝐸̂, Γ̀) and (𝐹, 𝐸̂)be a soft set over K", then: 

1) {𝜂𝑑
𝑒𝑑}𝑑∈𝐷 is eventually in (𝐹, 𝐸̂)  if  there is 𝑑0 ∈ 𝐷 such that 𝜂𝑑

𝑒𝑑 ∈̃ (𝐹, 𝐸̂) for all  𝑑 ≥ 𝑑0. 

2) {𝜂𝑑
𝑒𝑑}𝑑∈𝐷 is frequently in (𝐹, 𝐸̂)  if for all 𝑑 ∈ 𝐷 , there is 𝑑0 ∈ 𝐷 with 𝑑0 ≥ 𝑑 such that 

𝜂𝑑0

𝑒𝑑0 ∈̃ (𝐹, 𝐸̂). 

 

Remark (3.4)[2] 

 For all eventually S-net in 𝐾 is frequently, but the converse isn’t true in general. 

 

Definitions (3.5)[2] 

 A S-net {𝜂𝑑
𝑒𝑑}𝑑∈𝐷 in a soft topological space (𝐾, 𝐸̂, Γ̀) is called: 

1) Converge to a soft point 𝑥𝔢 (S-convergence) if it is eventually in every soft neighborhood of 𝑥𝔢           

(written 𝜂𝑑
𝑒𝑑 → 𝑥𝔢), and 𝑥𝔢 is called soft limit (S-limit) point of {𝜂𝑑

𝑒𝑑}𝑑∈𝐷. 

2)  Have no S-convergent subnet in (𝐾, 𝐸̂, Γ̀) (written 𝜂𝑑
𝑒𝑑 → ∞) iff every subnet of {𝜂𝑑

𝑒𝑑}𝑑∈𝐷 has no 

S-limit point. 

3) Have a soft cluster (S-cluster) point  𝑥𝔢 ∈̃ 𝐾̃ if it is frequently in every soft neighborhood of  𝑥𝔢 

(written 𝜂𝑑
𝑒𝑑𝛼 𝑥e). 

 

Proposition (3.6)[2] 

 If 𝜂𝑑
𝑒𝑑 → 𝑥𝔢, then 𝜂𝑑

𝑒𝑑𝛼 𝑥e. 

 

Theorem (3.7)[2]  

Let (𝐹, 𝐸̂) be a soft set over K and 𝑥𝔢 ∈̃ 𝐾̃, then 𝑥𝔢 ∈̃ 𝑐𝑙(𝐹, 𝐸̂) iff there exists a S-net {𝜂𝑑
𝑒𝑑}𝑑∈𝐷 in 

(𝐹, 𝐸̂)  such that 𝜂𝑑
𝑒𝑑 → 𝑥𝔢. 

 

Corollary (3.8)[2]  
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A S-net {𝜂𝑑
𝑒𝑑}𝑑∈𝐷 is called to have a S-cluster point 𝑥𝔢 ∈̃ 𝐾̃ iff  {𝜂𝑑

𝑒𝑑}𝑑∈𝐷have a subnet converges to 

𝑥𝔢. 

 

Remark (3.9)[2]  

Let ℎ: 𝐾 → ℳ be a function, then: 

1) If {𝜂𝑑
𝑒𝑑}𝑑∈𝐷 be a S-net in 𝐾, then {ℎ(𝜂𝑑

𝑒𝑑)}𝑑∈𝐷 is a soft net in ℳ. 

2) If {𝛾𝑑
𝑒𝑑}𝑑∈𝐷 be a S-net in ℳ, then there is a S-net {𝜂𝑑

𝑒𝑑}𝑑∈𝐷 in 𝐾 such that  ℎ(𝜂𝑑
𝑒𝑑) = 𝛾𝑑

𝑒𝑑 for each 

𝑑 ∈ 𝐷. 

3) If 𝜂𝑑
𝑒𝑑 = 𝑥𝔢 for all 𝑑 ∈ 𝐷, then 𝜂𝑑

𝑒𝑑 → 𝑥𝔢.  

 

Theorem (3.10)[2]  

A function ℎ: 𝐾 → ℳ is soft continuous  at  𝑥𝔢 ∈̃ 𝐾̃ iff for all S-net {𝜂𝑑
𝑒𝑑}𝑑∈𝐷 in 𝐾 with 𝜂𝑑

𝑒𝑑 → 𝑥𝔢, 

then ℎ(𝜂𝑑
𝑒𝑑) → ℎ(𝑥𝔢). 

 

Theorem (3.11)[2]  

"A S-net {𝜔𝑑
𝑒𝑑}𝑑∈𝐷   in product soft topological space ∏𝐾𝜀 , 𝜀 ∈ 𝛺  is convergence to 𝑥𝔢 ∈̃ ∏𝐾𝜀  if 

𝑃𝑟𝜀(𝜔𝑑
𝑒𝑑) → 𝑃𝑟𝜀 (𝑥𝔢) in 𝐾̃𝜀  for each 𝜀 ∈, where 𝑃𝑟𝜀 is a soft projection function from ∏𝐾𝜀 to 𝐾𝜀." 

 

Theorem (3.12)[2]  

"A "soft topological space"(𝐾, 𝐸̂, Γ̀) is 𝑆𝑇2- space iff every S-net has a unique S-limit point". 

  

Proposition (3.13) 

 If {𝜂𝑑
𝑒𝑑}𝑑∈𝐷 be a  S-net in converge to 𝑥𝔢 in  𝐾, then every subnet of {𝜂𝑑

𝑒𝑑}𝑑∈𝐷 is converges to 𝑥𝔢. 

The proof is clear from definition (3.3(1)) and (3.5(2)). 

 

Theorem (3.14)  

"Let {𝜂𝑑
𝑒𝑑}𝑑∈𝐷be a S-net in soft topological space (𝐾, 𝐸̂, Γ̀) and for each 𝑑0 ∈ 𝐷, (𝐹, 𝐸̂)𝑑0

= {𝜂𝑑
𝑒𝑑: 𝑑 ≥

𝑑0},  𝑥𝔢 ∈̃ 𝐾̃ is S-cluster point of {𝜂𝑑
𝑒𝑑}𝑑∈𝐷  iff  𝑥𝔢 ∈̃ 𝑐𝑙(𝐹, 𝐸̂)𝑑0

 for all 𝑑0 ∈ 𝐷 ". 

Proof: If  𝑥𝔢  is S-cluster point of {𝜂𝑑
𝑒𝑑}𝑑∈𝐷 , then for each 𝑑0 ∈ 𝐷 , (𝐹, 𝐸̂)𝑑0

 intersect each S-

neighborhood of 𝑥𝔢 because {𝜂𝑑
𝑒𝑑}𝑑∈𝐷  is frequently in each S-neighborhood of 𝑥𝔢 , then 

𝑥𝔢 ∈̃ 𝑐𝑙(𝐹, 𝐸̂)𝑑0
. 

Conversely: If 𝑥𝔢  be not S-cluster point of {𝜂𝑑
𝑒𝑑}𝑑∈𝐷 , then there is (𝐺, 𝐸̂) ∈̃ 𝒩𝑠(𝑥𝔢) such that 

{𝜂𝑑
𝑒𝑑}𝑑∈𝐷 isn’t frequently in (𝐺, 𝐸̂), hence for some 𝑑0 ∈ 𝐷 if 𝑑 ≥ 𝑑0, then 𝜂𝑑

𝑒𝑑 ∉̃ (𝐺, 𝐸̂).  

Then (𝐹, 𝐸̂)𝑑0
∩̃ (𝐺, 𝐸̂) = ∅̃, then 𝑥𝔢 ∈̃ 𝑐𝑙(𝐹, 𝐸̂)𝑑0

. 

 

Definition (3.15)  

Let ℎ: (𝐾, 𝐸̂, Γ̀) → (ℳ, 𝐸̂, Γ̀)̀  be a function, a soft set (𝐹, 𝐸̂)ℎ of  ℎ(𝐾) which is defined by (𝐹, 𝐸̂)ℎ =
{𝛾𝔢 ∈̃ ℎ(𝐾): there is  S-net {𝜂𝑑

𝑒𝑑}𝑑∈𝐷in 𝐾 with 𝜂𝑑
𝑒𝑑 → ∞ and ℎ(𝜂𝑑

𝑒𝑑) → γe } is called exceptional soft 

set of ℎ. 

 

Theorem (3.16)  

Let  ℎ: (𝐾, 𝐸̂, Γ̀)  → (ℳ, 𝐸̂, Γ̀)̀  be a soft continuous function, where (𝐾, 𝐸̂, Γ̀)  is soft compact, and 

(𝐾, 𝐸̂, Γ̀), (ℳ, 𝐸̂, Γ̀)̀  are 𝑆𝑇2 − spaces. Then the following statements are equivalents: 

1) ℎ is S-proper function 

2) ℎ is soft closed function and ℎ−1(𝛾𝔢) is soft compact set over K for all 𝛾𝔢 ∈̃ ℳ̃. 
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3) If {𝜂𝑑
𝑒𝑑}𝑑∈𝐷 is a S-net in (𝐾, 𝐸̂, Γ̀)  and 𝛾𝔢 ∈̃ ℳ̃ is soft cluster point of {ℎ(𝜂𝑑

𝑒𝑑)}𝑑∈𝐷
, then there is a 

S-cluster point 𝑥𝔢 ∈̃ 𝐾̃ of {𝜂𝑑
𝑒𝑑}𝑑∈𝐷 such that ℎ(𝑥𝔢) = 𝛾𝔢. 

Proof: 21→  Let (𝐹, 𝐸̂) be a soft closed set over K, since(𝐾, 𝐸̂, Γ̀) is soft compact, then (𝐹, 𝐸̂)  is 

soft compact set over K (by theorem (2.10(i)). 

"Since ℎ is soft continuous function, then ℎ(𝐹, 𝐸̂)  is soft compact set over ℳ (by theorem 1.10(iii)) 

Since (ℳ, 𝐸̂, Γ̀)̀  is a 𝑆𝑇2 − space, then ℎ(𝐹, 𝐸̂) is soft closed over ℳ (by theorem 2.10(ii)), then ℎ is 

soft closed function." 

Now : "{𝛾𝔢  }is a soft closed set over ℳfor all 𝛾𝔢 ∈ ℳ̃, since ℎ is soft continuous function, then 

ℎ−1(𝛾𝔢) is soft closed set over K, since (𝐾, 𝐸̂, Γ̀)  is soft compact space , then ℎ−1(𝛾𝔢)  is soft compact 

(by theorem 2.10(i))". 

32→  let {𝜂𝑑
𝑒𝑑}𝑑∈𝐷  be a S-net over K and  𝛾𝔢 ∈ ℳ̃  be a S-cluster point of a soft net 

{ℎ(𝜂𝑑
𝑒𝑑)}𝑑∈𝐷 over ℳ.Claim ℎ−1(𝛾𝔢) ≠ ∅̃ and suppose that the statements (3) not true, that means for 

𝑥𝔢 ∈̃ ℎ−1(𝛾𝔢), there is soft open set (𝐹, 𝐸̂)𝑥𝔢 over K contains 𝑥𝔢 such that {𝜂𝑑
𝑒𝑑}𝑑∈𝐷isn’t frequently in 

(𝐹, 𝐸̂)𝑥𝔢. 

 Notice that ℎ−1(𝛾𝔢) = 𝑈̃ {𝑥𝑒}𝑥𝑒∈ℎ−1{𝛾𝑒} . Then the family{(𝐹, 𝐸̂)𝑥𝔢: 𝑥𝔢 ∈̃ ℎ−1(𝛾𝔢)} is soft open cover 

of ℎ−1(𝛾𝔢) , but ℎ−1(𝛾𝔢)  is soft compact set, then there are 𝑥1
𝑒 , 𝑥2

𝑒, . . . , 𝑥𝑛
𝑒  such that 

ℎ−1(𝛾𝑒) ⊂̃∪̃𝑖=1
𝑛 (𝐹, 𝐸̂)𝑥𝑖

𝑒 ,then ℎ−1(𝛾𝑒) ∩̃ (∪̃𝑖=1
𝑛 (𝐹, 𝐸̂)𝑥𝑖

𝑒)𝑐 = ∅̃. 

Then ℎ−1(𝛾𝑒) ∩̃ (∩̃𝑖=1
𝑛 (𝐹𝑐 , 𝐸̂)𝑥𝑖

𝑒) = ∅̃ , but {𝜂𝑑
𝑒𝑑}𝑑∈𝐷 isn’t frequently in (𝐹, 𝐸̂)𝑥𝑖

𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 =

1,2, . . . , 𝑛 , thus isn’t frequently in  ∪̃𝑖=1
𝑛 (𝐹, 𝐸̂)𝑥𝑖

𝑒 , but ∪̃𝑖=1
𝑛 (𝐹, 𝐸̂)𝑥𝑖

𝑒  is soft open set over 𝐾 , so 

∩̃𝑖=1
𝑛 (𝐹𝑐 , 𝐸̂)𝑥𝑖

𝑒is soft closed set in 𝐾.Thus by assumption ℎ(∩̃𝑖=1
𝑛 (𝐹𝑐 , 𝐸̂)𝑥𝑖

𝑒) is soft closed in ℳ. 

Claim γe ∉̃ ℎ(∩̃𝑖=1
𝑛 (𝐹𝑐 , 𝐸̂)𝑥𝑖

𝑒), if 𝛾𝑒 ∈̃ ℎ(∩̃𝑖=1
𝑛 (𝐹𝑐 , 𝐸̂)𝑥𝑖

𝑒) then there is 𝑥𝔢 ∈̃∩̃𝑖=1
𝑛 (𝐹𝑐 , 𝐸̂)𝑥𝑖

𝑒  such that 

ℎ(𝑥ℯ) = 𝛾ℯ, thus 𝑥ℯ ∉̃∪̃𝑖=1
𝑛 (𝐹, 𝐸̂)𝑥𝑖

𝑒, but  𝑥ℯ ∈̃ ℎ−1(𝛾𝑒}, therefore ℎ−1{𝛾𝑒} ⊄̃∪̃𝑖=1
𝑛 (𝐹, 𝐸̂)𝑥𝑖

𝑒, this is 

contradiction, then there is soft open set (𝐺, 𝐸̂) over K such that 

ℎ−1(𝐺, 𝐸̂) ∩̃ ℎ−1(ℎ(∩̃𝑖=1
𝑛 (𝐹𝑐 , 𝐸̂)𝑥𝑖

𝑒)) = ∅̃, i.e ℎ−1(𝐺, 𝐸̂) ∩̃ (∩̃𝑖=1
𝑛 (𝐹𝑐 , 𝐸̂)𝑥𝑖

𝑒) = ∅̃, then 

ℎ−1(𝐺, 𝐸̂) ⊂̃∪̃𝑖=1
𝑛 (𝐹, 𝐸̂)𝑥𝑖

𝑒, but ℎ({𝜂𝑑
𝑒𝑑}𝑑∈𝐷) is frequently in (𝐺, 𝐸̂), then {𝜂𝑑

𝑒𝑑}𝑑∈𝐷is frequently in 

ℎ−1(𝐺, 𝐸̂) and then it is frequently in∪̃𝑖=1
𝑛 (𝐹, 𝐸̂)𝑥𝑖

𝑒.This is a contradiction, then there is S-cluster 

point 𝑥ℯ in 𝐾 such that ℎ(𝑥𝑒) = 𝛾𝑒.  

13→  To prove that  ℎ × 𝐼𝑍: 𝐾 × 𝑍 → ℳ × 𝑍 is S-closed function for any soft space Z, let (𝐹, 𝐸̂) be 

soft closed over 𝐾 × 𝑍and let  ℎ × 𝐼𝑍(𝐹, 𝐸̂) = (𝐺, 𝐸̂). 

To prove that (𝐺, 𝐸̂) is soft closed set over ℳ × 𝑍, let (𝛾𝔢, 𝑧𝔢) ∈̃ 𝑐𝑙(𝐺, 𝐸̂), by theorem (3.7) there is 

a S-net ( 𝛾𝑑
𝑒𝑑 , 𝑧𝑑

𝑒𝑑)𝑑∈𝐷  in (𝐺, 𝐸̂)  such that ( 𝛾𝑑
𝑒𝑑 , 𝑧𝑑

𝑒𝑑)𝑑∈𝐷→(𝛾𝔢, 𝑧𝔢) , thus there is a S-net 

{(𝜂𝑑
𝑒𝑑 , 𝑧𝑑

𝑒𝑑)}𝑑∈𝐷in (𝐹, 𝐸̂) such that (ℎ × 𝐼𝑍){(𝜂𝑑
𝑒𝑑 , 𝑧𝑑

𝑒𝑑)}𝑑∈𝐷 = (𝛾𝑑
𝑒𝑑 , 𝑧𝑑

𝑒𝑑) for all 𝑑 ∈ 𝐷 ( by theorem 

3.9(2)). 

Then by theorem (3.11) we have ℎ(𝛾𝑑
𝑒𝑑) → 𝛾𝔢 and 𝐼𝑍(𝑧𝑑

𝑒𝑑) → 𝑧𝑒and ℎ(𝑥𝑒) = 𝛾𝑒 . 

Since{𝜂𝑑
𝑒𝑑}𝑑∈𝐷 is a S-net in (𝐹, 𝐸̂)  for some soft point 𝑥𝑒 ( see definition(3.15), thus by theorem(3.11) 

(𝜂𝑑
𝑒𝑑 , 𝑧𝑑

𝑒𝑑)𝑑∈𝐷 → (𝑥𝔢, 𝑧𝔢). Since (𝐹, 𝐸̂) is soft closed set , then (𝐹, 𝐸̂) = 𝑐𝑙(𝐹, 𝐸̂)(see proposition 

2.3(2)). 

Then (𝛾ℯ , 𝑧ℯ) = (ℎ × 𝐼𝑍)(𝑥𝔢, 𝑧𝔢) ∈̃ (𝐺, 𝐸̂) . Then (𝐺, 𝐸̂) = 𝑐𝑙(𝐺, 𝐸̂)  , hence (𝐺, 𝐸̂) is soft closed of 

ℳ × 𝑍 . 

Then ℎ × 𝐼𝑍 is soft continuous function, thus  ℎ × 𝐼𝑍  is S-proper function. 

 

Theorem (3.17)   
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Let  ℎ: 𝐾 → 𝑀where (𝐾, 𝐸̂, Γ̀) is 𝑆𝑇2 − space , then ℎ is S-proper function  iff (𝐹, 𝐸̂)ℎ = ∅̃. 

Proof: Let ℎ be a S-proper function and suppose if possible that (𝐹, 𝐸̂)ℎ ≠ ∅̃ , then there is a soft  

point 𝛾𝔢 ∈̃ (𝐹, 𝐸̂)ℎ. Then there is a S-net {𝜂𝑑
𝑒𝑑}𝑑∈𝐷 over K with 𝜂𝑑

𝑒𝑑 → ∞ such that ℎ(𝜂𝑑
𝑒𝑑) → γe, then 

there is a soft point  𝑥𝔢 ∈̃ 𝐾̃ such that 𝜂𝑑
𝑒𝑑 → 𝑥ℯ  and ℎ(𝑥𝑒) = 𝛾𝑒. Then we have the net {𝜂𝑑

𝑒𝑑}𝑑∈𝐷 is 

S-convergent and this contradiction, then (𝐹, 𝐸̂)ℎ = ∅̃. 

Conversely: "Let (𝐹, 𝐸̂)ℎ = ∅̃, to show that  (ℎ × 𝐼𝑍): 𝐾 × 𝑍 → ℳ × 𝑍 is soft closed for any soft 

space Z. Let (𝐹, 𝐸̂) be soft closed over 𝐾 × 𝑍 and (ℎ × 𝐼𝑍)(𝐹, 𝐸̂) = (𝐺, 𝐸̂), to prove that (𝐺, 𝐸̂) is 

soft closed set over ℳ × 𝑍 , let (𝛾ℯ , 𝑧ℯ) ∈̃ 𝑐𝑙(𝐺, 𝐸̂). Then by theorem(3.7) there is a S-net (𝛾𝑑
𝑒𝑑 , 𝑧𝑑

𝑒𝑑) 

in (𝐺, 𝐸̂)  such that (𝛾𝑑
𝑒𝑑 , 𝑧𝑑

𝑒𝑑) →  (𝛾ℯ , 𝑧ℯ) , thus there is a S-net (𝜂𝑑
𝑒𝑑, 𝑧𝑑

𝑒𝑑)  such that (ℎ ×
𝐼𝑍)(𝜂𝑑

𝑒𝑑 , 𝑧𝑑
𝑒𝑑)𝑑∈𝐷 = (𝛾𝑑

𝑒𝑑 , 𝑧𝑑
𝑒𝑑) for all 𝑑 ∈ 𝐷 ". 

Theorem (3.11) we have ℎ(𝜂𝑑
𝑒𝑑) → 𝛾ℯ  and 𝐼𝑍(𝑧𝑑

𝑒𝑑) → 𝑧𝑒  .Since (𝐹, 𝐸̂)ℎ = ∅̃ , then 𝜂𝑑
𝑒𝑑 → 𝑥𝔢  for 

some 𝑥𝔢 ∈̃ 𝐾̃, then by theorem(3.11) we gate (𝜂𝑑
𝑒𝑑 , 𝑧𝑑

𝑒𝑑) → (𝑥ℯ , 𝑧ℯ). Since (𝐹, 𝐸̂) is soft closed set, 

then by theorem (3.7) we gate (𝑥ℯ , 𝑧ℯ) ∈̃ (𝐹, 𝐸̂). 

Since (ℎ × 𝐼𝑍)  is S-continuous function,   then (ℎ × 𝐼𝑍)(𝜂𝑑
𝑒𝑑, 𝑧𝑑

𝑒𝑑) = (ℎ(𝜂𝑑
𝑒𝑑), 𝐼𝑍(𝑧𝑑

𝑒𝑑)) → (ℎ ×

𝐼𝑍)(𝑥ℯ , 𝑧ℯ) = ℎ(𝑥𝔢) × 𝐼𝑍(𝑧𝔢) . Then by theorem (3.16(3)) we have ℎ(𝑥𝑒) = 𝛾𝑒  which implies to 

(𝛾ℯ , 𝑧ℯ) ∈̃ (𝐺, 𝐸̂), then (𝐺, 𝐸̂) is soft closed set. 

 

Theorem (3.18)[2] 

The composition of two S-proper function is S-proper. 

 

Theorem(2.19)  

Let 𝑓1: 𝐾1 → ℳ1  and 𝑓2: 𝐾2 → ℳ2  be two S-proper functions where 𝐾𝑖  and ℳ𝑖  are 𝑆𝑇1 - space , 

i=1,2, then 𝑓1 × 𝑓2: 𝐾1 × 𝐾2 → ℳ1 × ℳ2 is S-proper function iff  if  is S-proper function. 

Proof: We want to prove (𝐹, 𝐸̂)𝑓1×𝑓2
= ∅̃, if not there is (𝑦1

𝑒 , 𝑦2
𝑒) ∈̃ (𝐹, 𝐸̂)𝑓1×𝑓2

 , then there is a S-net 

(𝜂𝑑1

𝑒𝑑1 , 𝜂𝑑2

𝑒𝑑2) in 𝐾1 × 𝐾2 which has no S-limit point such that (𝑓1 × 𝑓2)(𝜂𝑑1

𝑒𝑑1 , 𝜂𝑑2

𝑒𝑑2) → (𝑦1
𝑒 , 𝑦2

𝑒), then 

by theorem(3.11) we have (𝑓1(𝜂𝑑1

𝑒𝑑1), 𝑓2(𝜂𝑑2

𝑒𝑑2)) → (𝑦1
𝑒 , 𝑦2

𝑒), then 𝑓1(𝜂𝑑1

𝑒𝑑1) → 𝑦1
𝑒 and 𝑓2(𝜂𝑑2

𝑒𝑑2) → 𝑦2
𝑒, 

but 𝑓1  and 𝑓2  are S-proper, then by theorem (3.17) we have (𝐹, 𝐸̂)𝑓1
= ∅̃and (𝐹, 𝐸̂)𝑓2

= ∅̃ which 

implies that 𝜂𝑑1

𝑒𝑑1 → 𝑥𝑒1
∈̃ 𝐾̃1 and 𝜂𝑑2

𝑒𝑑2 → 𝑥𝑒2 ∈̃ 𝐾̃2 , then (𝜂𝑑1

𝑒𝑑1 , 𝜂𝑑2

𝑒𝑑2) → (𝑥𝑒1 , 𝑥𝑒2)𝑓1×𝑓2
 this is 

contradiction, therefore (𝐹, 𝐸̂)𝑓1×𝑓2
= ∅̃, then 𝑓1 × 𝑓2 is S-proper function. 

Conversely: We want to prove that 𝑓1 and 𝑓2 are S-proper functions, since 21 ff   is S-proper, then 

by theorem (3.17) we have (𝐹, 𝐸̂)𝑓1×𝑓2
= ∅̃. 

Suppose that 𝑦1
𝑒1 ∈̃ ℳ̃1  and 𝑦1

𝑒1 ∈̃ (F,  𝐸̂
1

) f
, then there is a S-net {𝜂𝑑1

𝑒𝑑1}𝑑1∈𝐷   in 𝐾̃1  with 𝜂𝑑1
𝑒𝑑1 →

∞ and 𝑓(𝜂𝑑1

𝑒𝑑1) → 𝑦1
𝑒 , thus for each S-net {𝜂𝑑2

𝑒𝑑2}𝑑2∈𝐷  in 𝐾̃2 , the S-net (𝜂𝑑1

𝑒𝑑1 , 𝜂𝑑2

𝑒𝑑2) has no S-limit 

point, otherwise {𝜂𝑑1

𝑒𝑑1} has S-limit point, if we take 𝜂𝑑2

𝑒𝑑2 = 𝑥𝑒0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑑2 ∈ 𝐷, then 𝑓2(𝜂𝑑2

𝑒𝑑2) →

𝑓2(𝑥𝑒0
) = 𝑦2

𝑒, but this implies that (𝑓1 × 𝑓2)(𝜂𝑑1

𝑒𝑑1 , 𝜂𝑑2

𝑒𝑑2) = (𝑓1(𝜂𝑑1

𝑒𝑑1), 𝑓2(𝜂𝑑2

𝑒𝑑2)) → (𝑦1
𝑒 , 𝑦2

𝑒), that is 

(𝑦1
𝑒 , 𝑦2

𝑒) ∈̃ (𝐹, 𝐸̂)𝑓1×𝑓2
 this is contradiction, there for (𝐹, 𝐸̂)𝑓1

= ∅̃,  then 𝑓1 is s-proper. 

In similar way, we can prove that 𝑓2 is s-proper function. 

 

Theorem (3.20)[2] 

 Let (𝐾, 𝐸̂,Γ ̀)   be 𝑆𝑇2 −space, and let  ℎ: (𝐾, 𝐸̂, Γ̀) → {𝑎}  be a function, then ℎ  is S-proper iff  

(𝐾, 𝐸̂,Γ ̀) is soft compact where 𝑎𝑒 ∉̃ 𝐾. 

 



 

754 

 

Theorem (3.21)[2] 

 Let ℎ be S-proper function from (𝐾, 𝐸̂,Γ )̀ into (ℳ, 𝐸̂, Γ̀̀), then ℎ−1(𝐻, 𝐸̂) is S-compact over K for 

every (𝐻, 𝐸̂) is S-compact over ℳ. 

 
4.Convergence of Soft Filter 

      Some preliminaries about the soft filter are presented in this section by using soft set on an 

universal set and give several interesting properties, and we investigate the convergence theory of 

soft filter in a soft topological space.  

 
Definition (4.1)[5]  

A collection 𝜁of non-null soft sets over K which is satisfies: 

i) ∅̃ ∉̃ 𝜁 

ii) If (𝐹1, 𝐸̂), (𝐹2, 𝐸̂) ∈̃ 𝜁, then (𝐹1, 𝐸̂) ∩̃ (𝐹2, 𝐸̂) ∈̃ 𝜁 

iii) If  (𝐹1, 𝐸̂) ∈̃ 𝜁 and (𝐹1, 𝐸̂) ⊆̃ (𝐹2, 𝐸̂), then (𝐹2, 𝐸̂) ∈̃ 𝜁. 

is called soft filter (S-filter). 

 

Example (4.2)[5]  

Let (𝐾, 𝐸̂,Γ ̀) "be a soft topological space", a S-neighborhood 𝒩𝑆(𝑥ℯ) of a soft point 𝑥ℯ ∈̃ 𝐾̃ is a S-

filter, and is called the S-neighborhood filter. 

 

 

Example (4.3) 

 Let 𝐾 = {𝑎, 𝑏, 𝑐} , 𝐸̂ = {𝜔1, 𝜔2} , 𝜁 = {(𝐹1, 𝐸̂), (𝐹2, 𝐸̂), (𝐹3, 𝐸̂)}   where 𝐹1(𝜔1) = ∅, 𝐹1(𝜔2) =

𝐾, 𝐹2(𝜔1) = {𝑎, 𝑏}, 𝐹2(𝜔2) = 𝐾, 𝐹3(𝜔1) = {𝑎, 𝑐}, 𝐹3(𝜔2) = ∅. 

Then 𝜁 isn’t S-filter, because (𝐹1, 𝐸̂), (𝐹3, 𝐸̂) ∈̃ 𝜁but (𝐹1, 𝐸̂) ∩̃ (𝐹3, 𝐸̂) = ∅̃ ∉̃ 𝜁. 

 

Definition (4.4)[5] 

 A sub collection 𝜁0 of a S-filter 𝜁 on K is called a S-filter base iff  for all (𝐹, 𝐸̂) ∈̃ 𝜁  there is 

(𝐹0, 𝐸̂) ∈̃ 𝜁0 such that (𝐹0, 𝐸̂) ⊆̃ (𝐹, 𝐸̂). 

 

Definition(4.5)[5]  

If 𝜁0is a S-filter base for a S-filter 𝜁, then 𝜉 = {(𝐹, 𝐸̂): (𝐹0, 𝐸̂) ⊆̃ (𝐹, 𝐸̂)𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 (𝐹0, 𝐸̂) ∈̃ 𝜁0}is a 

S-filter called filter generated by 𝜁0. 

 

Remark (4.6)[5]  

A S-fiter 𝜁 over K doesn’t guarantee that 𝜁𝜔is a S-filter on K for each 𝜔 ∈ 𝐸̂. 

 

Definition (4.7)[5]  

A S-filter 𝜁on K is called S-convergence to 𝑥ℯ (written 𝜁 →  𝑥ℯ ), and the point 𝑥ℯ is called a S-limit 

point of 𝜁 iff  (𝐺, 𝐸̂) ∈̃ 𝜁 where (𝐺, 𝐸̂) is a S-neighborhood of  𝑥ℯ . 

A soft point 𝑥ℯ is called cluster point (C-point) of 𝜁 ( written 𝜁𝛼𝑥ℯ  iff  (𝐹, 𝐸̂) ∩̃ (𝐺, 𝐸̂) ≠ ∅̃ for all 

(𝐹, 𝐸̂) ∈̃ 𝜁 and (𝐺, 𝐸̂) ∈̃ 𝒩𝑆(𝑥ℯ). 

 

Remark (4.8)  

If a S-filter base 𝜁0convergence to  𝑥ℯ ∈̃ 𝐾̃, then a S-filter 𝜉 generated by 𝜁0 is also convergence to 

𝑥ℯ, that is if 𝜁0 → 𝑥ℯ, then 𝜉 →  𝑥ℯ .. 
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Theorem (4.9)  

A soft point 𝑥ℯ ∈̃ 𝐾̃ is S-limit point of a soft set (𝐹, 𝐸̂)over K iff (𝐹, 𝐸̂) − {𝑥ℯ} belongs to some filter 

𝜁 such that 𝜁 →𝑥ℯ. 

Proof: Suppose that 𝑥ℯ is a S-limit point, then (𝐺, 𝐸̂) ∩̃ (𝐹, 𝐸̂) − {𝑥ℯ} ≠ ∅̃ for all (𝐺, 𝐸̂) ∈̃ 𝒩𝑆(𝑥ℯ) 

Then 𝜁0={(𝐺, 𝐸̂) ∩̃ ((𝐹, 𝐸̂) − {𝑥ℯ})} is a S-filter base for some S-filter 𝜁, then (𝐹, 𝐸̂) − {𝑥ℯ} ∈̃ 𝜁 and  

𝜁 →𝑥ℯ 

Conversely: If  (𝐹, 𝐸̂) − {𝑥ℯ} ∈̃ 𝜁  with  𝜁  →𝑥ℯ , then  (𝐺, 𝐸̂) ∩̃ ((𝐹, 𝐸̂) − {𝑥ℯ}) ≠ ∅̃  for all 

(𝐺, 𝐸̂) ∈̃ 𝒩𝑆(𝑥ℯ). 

 Thus 𝑥ℯ is a S-limit point of (𝐹, 𝐸̂). 

 

Theorem (4.10)  

A function ℎ: 𝐾 → ℳis S-continuous iff  ℎ(𝜁) → ℎ (𝑥ℯ) whenever → 𝑥ℯ. 

Proof: Let (𝐺, 𝐸̂) ∈̃ 𝒩𝑆(ℎ(𝑥ℯ)). Since ℎis continuous, then  ℎ−1((𝐺, 𝐸̂)) ∈̃ 𝒩𝑆(𝑥ℯ)  

Since → 𝑥ℯ, then ℎ−1((𝐺, 𝐸̂)) ∈̃ 𝜁, thus (𝐺, 𝐸̂) ∈̃ ℎ(𝜁). Then ℎ(𝜁) → ℎ (𝑥ℯ) 

Conversely: Suppose ℎ be not continuous function at 𝑥ℯ, then there is a soft set (𝐺, 𝐸̂) ∈̃ 𝒩𝑆(ℎ(𝑥ℯ)) 

such that ℎ((𝐹, 𝐸̂)) ⊈̃ (𝐺, 𝐸̂) for all  (𝐹, 𝐸̂) ∈̃ 𝒩𝑆(𝑥ℯ). 

Then for any (𝐹, 𝐸̂) ∈̃ 𝒩𝑆(𝑥ℯ), we can defined S-filter 𝜁on (𝐹, 𝐸̂) such that ℎ(𝜁) ∉̃ (𝐺, 𝐸̂), but 𝜁is a 

S-filter over K with 𝜁 → 𝑥ℯ this is contradiction, then h is S-continuous. 

 

Theorem (4.11)  

A S-filter 𝜁 over K has a C-point 𝑥ℯ iff  𝑥𝔢 ∈̃ 𝑐𝑙(𝐹, 𝐸̂) for all  (𝐹, 𝐸̂) ∈̃ 𝜁. 

Proof: 𝜁𝛼𝑥ℯ    (𝐹, 𝐸̂) ∩̃ (𝐺, 𝐸̂) ≠ ∅̃ for all (𝐹, 𝐸̂) ∈̃ 𝜁 and (𝐺, 𝐸̂) ∈̃ 𝒩𝑆(𝑥ℯ)   𝑥ℯ ∈̃ 𝑐𝑙(𝐹, 𝐸̂) for 

all (𝐹, 𝐸̂) ∈̃ 𝜁 𝑥ℯ ∈̃∩̃ 𝑐𝑙(𝐹, 𝐸̂). 

 

Theorem (4.12)  

If  𝜁 →𝑥ℯ , then 𝜁𝛼𝑥ℯ. 

Proof: Suppose 𝜁 →𝑥ℯ, (𝐹, 𝐸̂) ∈̃ 𝜁 and (𝐺, 𝐸̂) ∈̃ 𝒩𝑆(𝑥ℯ) 

Since 𝜁 →𝑥ℯ and (𝐹, 𝐸̂) ∈̃ 𝜁, then (𝐹, 𝐸̂) ∈̃ 𝒩𝑆(𝑥ℯ) 

Since (𝐹, 𝐸̂) ∈̃ 𝒩𝑆(𝑥ℯ)  and (𝐺, 𝐸̂) ∈̃ 𝒩𝑆(𝑥ℯ) , then (𝐹, 𝐸̂) ∩̃ (𝐺, 𝐸̂) ∈̃ 𝒩𝑆(𝑥ℯ)  , thus 

(𝐹, 𝐸̂) ∩̃ (𝐺, 𝐸̂) ≠ ∅̃. Then 𝜁𝛼𝑥ℯ. 

 

Theorem (4.13)  

A S-filter base 𝜁0  over K is S-convergence to  𝑥ℯ ∈̃ 𝐾̃  iff for all (𝐺, 𝐸̂) ∈̃ 𝒩𝑆(𝑥ℯ) , there is 

(𝐹0, 𝐸̂) ∈̃ 𝜁0 such that (𝐹0, 𝐸̂) ⊆̃ (𝐺, 𝐸̂). 

Proof: Let 𝜁 →𝑥ℯ, then a S-filter 𝜁generated by 𝜁0 is convergence to 𝑥ℯ (remark4.8). 

Then   (𝐺, 𝐸̂) ∈̃ 𝜁 for all (𝐺, 𝐸̂) ∈̃ 𝒩𝑆(𝑥ℯ), ( from definition 4.7), then there is (𝐹0, 𝐸̂) ∈̃ 𝜁0 such that 

(𝐹0, 𝐸̂) ⊆̃ (𝐺, 𝐸̂) (see definition 4.5) 

Conversely: let (𝐺, 𝐸̂) ∈̃ 𝒩𝑆(𝑥ℯ) , then by hypotheses there is (𝐹0, 𝐸̂) ∈̃ 𝜁0 such that 

(𝐹0, 𝐸̂) ⊆̃ (𝐺, 𝐸̂). Since 𝜁0 is a S-filter over K, then (𝐺, 𝐸̂) ∈̃ 𝜁0 (from definition (3.1(3)), then (𝐺, 𝐸̂) 

∈̃ 𝜁0for all (𝐺, 𝐸̂) ∈̃ 𝒩𝑆(𝑥ℯ), then 𝜁0 → 𝑥ℯ (by definition 4.7). 

 

Theorem (4.14)  

A S-filter 𝜁 over K has a C-point 𝑥ℯ iff there is a S-filter 𝜁′ finer than 𝜁 which converges to 𝑥ℯ. 
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Proof: Suppose that 𝜁𝛼𝑥ℯ, then (𝐹, 𝐸̂) ∩̃ (𝐺, 𝐸̂) ≠ ∅̃. for all (𝐹, 𝐸̂) ∈̃ 𝜁 and (𝐺, 𝐸̂) ∈̃ 𝒩𝑆(𝑥ℯ). 

Then 𝜁0
′ = {(𝐹, 𝐸̂) ∩̃ (𝐺, 𝐸̂)}  is S-filter base for some S-filter 𝜁′ which is finer than 𝜁  and 

convergence to 𝑥ℯ. 

Conversely: Since 𝜁 ⊆̃ 𝜁′ and 𝜁′ → 𝑥ℯ , then (𝐺, 𝐸̂) ∈̃ 𝜁′for all (𝐺, 𝐸̂) ∈̃ 𝒩𝑆(𝑥ℯ). 

Since 𝜁 ⊆̃ 𝜁′, then (𝐹, 𝐸̂) ∩̃ (𝐺, 𝐸̂) ≠ ∅̃  for all (𝐹, 𝐸̂) ∈̃ 𝜁 and (𝐺, 𝐸̂) ∈̃ 𝒩𝑆(𝑥ℯ), then 𝜁𝛼𝑥ℯ. 

 

Theorem (4.15)  

Let (𝐹, 𝐸̂) be a soft set over K, 𝑥ℯ ∈̃ 𝐾̃, then 𝑥ℯ ∈̃ 𝑐𝑙(𝐹, 𝐸̂) iff there is a S-filter 𝜁over K such that 

(𝐹, 𝐸̂) ∈̃ 𝜁 and 𝜁 →𝑥ℯ . 

Proof: If 𝑥ℯ ∈̃ 𝑐𝑙(𝐹, 𝐸̂) , then (𝐹, 𝐸̂) ∩̃ (𝐺, 𝐸̂) ≠ ∅̃  for all (𝐺, 𝐸̂) ∈̃ 𝒩𝑆(𝑥ℯ) , then 𝜁0 =

(𝐹, 𝐸̂) ∩̃ (𝐺, 𝐸̂) is S-filter base for some S-filter 𝜁. The resulting S-filter contains (𝐹, 𝐸̂) and 𝜁 →𝑥ℯ. 

Conversely: Let 𝜁 be a S-filter such that 𝜁 →𝑥ℯ, then 𝜁𝛼𝑥ℯ (by theorem 4.12). 

Then (𝐹, 𝐸̂) ∩̃ (𝐺, 𝐸̂) ≠ ∅̃ for all (𝐺, 𝐸̂) ∈̃ 𝒩𝑆(𝑥ℯ) and (𝐹, 𝐸̂) ∈̃ 𝜁, then 𝑥ℯ ∈̃ 𝑐𝑙(𝐹, 𝐸̂). 

 

Corollary (4.16) 

 Let (𝐹, 𝐸̂) be a soft set over K, 𝑥ℯ ∈̃ 𝐾̃ , then 𝑥ℯ ∈̃ 𝑐𝑙(𝐹, 𝐸̂) iff there is a S-filter base 𝜁0 over K such 

that (𝐹, 𝐸̂) ∈̃ 𝜁0 and 𝜁0 → 𝑥ℯ . 

 

Definition (4.17)  

Let 𝜁0 be a S-filter base over K for all (𝐹1, 𝐸̂), (𝐹2, 𝐸̂) ∈̃ 𝜁0 , we put  (𝐹1, 𝐸̂) ≥ (𝐹2, 𝐸̂)  iff 

(𝐹1, 𝐸̂) ⊆̃ (𝐹2, 𝐸̂) , then (𝜁0, ≥)  is directed set. For all (𝐹, 𝐸̂) ∈̃ 𝜁0  define 𝜂: 𝜁0 →∪̃ (𝐹, 𝐸̂) , 

(𝐹, 𝐸̂) ∈̃ 𝜁0 such that for all (𝐹, 𝐸̂) ∈̃ 𝜁0 take (fixed) 𝜂(𝐹,𝐸̂) ∈̃ (𝐹, 𝐸̂)  such that 𝜂(𝐹, 𝐸̂) = 𝜂(𝐹,𝐸̂) 

Thus (𝜂(𝐹,𝐸̂))(𝐹,𝐸̂) ∈̃ 𝜁0 is a S-net over K and it is called a S-net associated with a S-filter base 𝜁0. 

 

Theorem (4.18)  

Let (𝜂(𝐹,𝐸̂))(𝐹,𝐸̂) ∈̃ 𝜁0be a S-net associated with a S-filter base 𝜁0 on a sts (𝐾, 𝐸̂, Γ̀) and  𝑥ℯ ∈̃ 𝐾̃. If 

𝜁0 → 𝑥ℯ, then 𝜂(𝐹,𝐸̂) → 𝑥𝔢. 

Proof: Let 𝜁0 → 𝑥ℯ and (𝐺, 𝐸̂) ∈̃ 𝒩𝑆(𝑥ℯ), then there is (𝐹0, 𝐸̂) ∈̃ 𝜁0 such that (𝐹0, 𝐸̂) ⊆̃ (𝐺, 𝐸̂). 

Then 𝜂(𝐹0,𝐸̂) ∈̃ (𝐺, 𝐸̂), So 𝜂(𝐹,𝐸̂) ∈̃ (𝐺, 𝐸̂), for all (𝐹, 𝐸̂) ≥ (𝐹0, 𝐸̂), then 𝜂(𝐹,𝐸̂) → 𝑥𝔢. 

 

Theorem (4.19)[5]  

 A sts (𝐾, 𝐸̂, Γ̀)  is 𝑆𝑇2 −space iff every convergence S-filter over K has a unique S-limit point. 

  

Theorem (4.20)  

A sts (𝐾, 𝐸̂, Γ̀) is S-compact iff each S-filter base 𝜁0 with S-adherent point 𝑥𝔢convergence to 𝑥𝔢. 

Proof: Suppose that (𝐾, 𝐸̂, Γ̀) be a S-compact and 𝑥𝔢 is a S-adherent point of 𝜁0, then 𝑥ℯ ∈̃ 𝑐𝑙(𝐹, 𝐸̂) 

for all (𝐹, 𝐸̂) ∈̃ 𝜁0, then 𝜁0 → 𝑥ℯ (see corollary 4.16) 

Conversely: Suppose that 𝜁0 → 𝑥ℯ, then by theorem (4.13) every S-net associated with a S-filter base 

convergence to 𝑥ℯ. 

Since every S-net has a subnet which convergence to 𝑥ℯ. 

Thus (𝐾, 𝐸̂, Γ̀) is S-compact space.  

  

Theorem (4.21)  

A S-filter on a space ∏𝐾𝜀, 𝜀 ∈ 𝛺 is convergence to  𝑥ℯ ∈̃ ∏𝐾𝜀  if 𝑃𝑟𝜀(𝜁) → 𝑃𝑟𝜀 (𝑥ℯ) in 𝐾𝜀for each 𝜀 ∈
𝛺. 
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"Proof: If 𝜁 → 𝑥ℯ  in ∏𝐾𝜀  for all 𝜀 ∈ 𝛺. Since 𝑃𝑟𝜀  are soft continuous functions, then by theorem 

(4.10) we have 𝑃𝑟𝜀(𝜁) → 𝑃𝑟𝜀 (𝑥ℯ) in ∏𝐾𝜀 for all 𝜀 ∈ 𝛺." 
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